Skip to main content
Log in

Distribution of bone-marrow stromal cells in a 3D scaffold depending on the seeding method and the scaffold inside a surface modification

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The distribution of bone-marrow stromal cells (BMSC) was studied in 3D polylactide scaffolds. Seeding of cells into the scaffold by the dynamic method (with the aid of a peristaltic pump) has been shown to provide distribution of cells throughout the entire scaffold volume, unlike the static method of seeding, in which the cell suspension is applied onto the scaffold surface. Unlike the cells seeded into the scaffold by the dynamic method, the cells seeded by the static method practically completely migrate from the scaffold on the dish for the first several days. It is revealed that BMSCs cultivated in 3D polylactide scaffolds modified by fibrin form colonies, whereas BMSCs cultivated inside scaffolds modified by collagen type 1 distribute all over the scaffold volume in the form of individual cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BMSC:

bone-marrow stromal cell

References

  • Bauwens, C.L., Peerani, R., Niebruegge, S., Woodhouse, K.A., Kumacheva, E., Husain, M., and Zandstra, P.W., Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories, Stem Cells, 2008, vol. 26, pp. 2300–2310.

    Article  PubMed  Google Scholar 

  • Boyce, S.T. and Warden, G.D., Principles and practices for treatment of cutaneous wounds with cultured skin substitutes, Amer. J. Surgery, 2002, vol. 183, pp. 445–456.

    Article  Google Scholar 

  • Capes, J.S., Ando, H.Y., and Camron, R.E., Fabrication of polymeric scaffolds with a controlled distribution of pores, J. Mater. Sci., Mater. Med., 2005, vol. 16, pp. 1069–1075.

    CAS  Google Scholar 

  • Carolyn, S.A., Reed, M.W.R., and Brown, N.J., A critical analysis of current in vitro and in vivo angiogenesis assays, Int. J. of Exper. Pathol., 2009, vol. 90, pp. 195–221.

    Article  Google Scholar 

  • Chandrakasan, G., Torchia, D.A., and Piez, K.A., Preparation of intact monomeric collagen from rat tail tendon and skin and the structure of the nonhelical ends in solution, J. Biol. Chem., 1967, vol. 251, pp. 6062–6067.

    Google Scholar 

  • Choi, S-W., Xie, J., and Xia, Y., Chitosan-based inverse opals: three-dimensional scaffolds with uniform pore structures for cell culture, Adv. Mat., 2009, vol. 21, pp. 2997–3001.

    Article  CAS  Google Scholar 

  • Dai, N.T., Williamson, M.R., Khammo, N., Adams, E.F., and Coombes, A.G., Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin, Biomaterials, 2004, vol. 25, pp. 4263–4271.

    Article  CAS  PubMed  Google Scholar 

  • Dar, A., Shachar, M., Leor, J., and Cohen, S., Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds, Biotechnol. Bioeng., 2002, vol. 80, pp. 305–312.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak, H.F., Harvey, V.S., Estrella, P., Brown, L.F., McDonagh, J., and Dvorak, A.M., Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing, Lab. Invest., 1987, vol. 57, pp. 673–686.

    CAS  PubMed  Google Scholar 

  • Hou, Q.P., Grijpma, D.W., and Feijen, J., Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique, Biomaterials, 2003, vol. 24, pp. 1937–1947.

    Article  CAS  PubMed  Google Scholar 

  • Khademhosseini, A., Langer, R., Borenstein, J., and Vacanti, J.P., Microscale technologies for tissue engineering and biology, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 2480–2487.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khetani, S.R. and Bhatia, S.N., Engineering tissues for in vitro applications, Curr. Opin. Biotechnol., 2005, vol. 17, pp. 524–531.

    Article  Google Scholar 

  • Mikos, A.G., Thorsen, A.J., Czerwonka, L.A., Bao, Y., Langer, R., Winslow, D.N., and Vacanti, J.P., Preparation and characterization of poly(L-lactic acid) foams, Polymer, 1994, vol. 35, pp. 1068–1077.

    Article  CAS  Google Scholar 

  • Nikolaenko, N.S., Tsypkina, N.V., Pinaev, G.P., Dulaev, A.K., Deev, R.V., and Gololobov, V.G., Isolation and culture of bone marrow stromal cells with a view to their use in treating bone defects, Transplantologiya, 2003, vol. 4, no. 1, pp. 169–171.

    Google Scholar 

  • Ruszczak, Z.B., Modern aspects of wound healing: an update, Dermatol. Surg., 2000, vol. 26, pp. 219–229.

    Article  CAS  PubMed  Google Scholar 

  • Rybarczyk, B.J., Lawrence, S.O., and Simpson-Haidaris, P.J., Matrix-fibrinogen enhances wound closure by increasing both cell proliferation and migration, Blood, 2003, vol. 102, pp. 4035–4043.

    Article  CAS  PubMed  Google Scholar 

  • Shi, G.X., Wang, S.G., and Bei, J.Z., Preparation of porous cell scaffolds of poly(L-lactic acid) and poly(L-lactic-go-glycolic acid) and measurement of their porosity, J. Funct. Polymer., 2001, vol. 14, pp. 7–11.

    Google Scholar 

  • Shved, Yu.A., Kukhareva, L.B., Zorin, I.M., Solovyov, A.Yu., Blinova, M.I., Bilibin, A.Yu., and Pinaev, G.P., Cultivation of human dermal fibroblasts on the polylactide polymer films, Tsitologiia, 2006, vol. 48, no. 2, pp. 161–168.

    CAS  PubMed  Google Scholar 

  • Shved, Yu.A., Zorin, I.M., Bilibin, A.Yu., Kukhareva, L.B., Blinova, M.I., and Pinaev, G.P., Interaction of cultured skin cells with the polylactide matrix coved with different collagen structural isoforms, Cell Tissue Biol., 2007, vol. 1, pp. 89–95.

    Article  Google Scholar 

  • Takei, A., Tashiro, Y., Nakashima, Y., and Sueishi, K., Effects of fibrin on the angiogenesis in vitro of bovine endothelial cells in collagen gel, In Vitro Cell. Devel. Biol. Animal., 1995, vol. 31, pp. 467–472.

    Article  CAS  Google Scholar 

  • Vunjak-Novakovic, G., Obradovic, B., Martin, I., Bursac, P.M., Langer, R., and Freed, L.E., Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering, Biotechnol. Prog., 1998, vol. 14, pp. 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Whang, K., Healy, K.E., Elenz, D.R., Nam, E.K., Tsai, D.C., Thomas, C.H., Nuber, G.W., Glorieux, F.H., Travers, R., and Sprague, S.M., Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture, Tis. Eng., 1999, vol. 5, pp. 35–51.

    Article  CAS  Google Scholar 

  • Yu, D.G., Lin, W.C., and Yang, M.C., Surface modification of poly(L-lactic acid) membrane via layer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayer, Bioconjugate Chem., 2007, vol. 18, pp. 1521–1529.

    Article  CAS  Google Scholar 

  • Zhu, H., Ji, J., and Shen, J., Surface engineering of poly(D,L-lactic acid) by entrapment of biomacromolecules, Macromol. Rapid Comm., 2002, vol. 23, pp. 819–823.

    Article  CAS  Google Scholar 

  • Zhu, X.H., Arifin, D.Y., Khoo, B.H., Hua, J., and Wang, C-H., Study of cell seeding on porous poly(D,L-lactic-co-glycolic acid) sponge and growth in a Couette-Taylor bioreactor, Chem. Eng. Science, 2010, vol. 65, pp. 2108–2117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Nashchekina.

Additional information

Original Russian Text © Yu.A. Nashchekina, P.O. Nikonov, V.M. Mikhailov, G.P. Pinaev, 2014, published in Tsitologiya, 2014, Vol. 56, No. 4, pp. 283–290.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nashchekina, Y.A., Nikonov, P.O., Mikhailov, V.M. et al. Distribution of bone-marrow stromal cells in a 3D scaffold depending on the seeding method and the scaffold inside a surface modification. Cell Tiss. Biol. 8, 313–320 (2014). https://doi.org/10.1134/S1990519X14040075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X14040075

Keywords

Navigation