Skip to main content
Log in

On the Frobenius Problem

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

The classical Frobenius problem (the Frobenius coin problem) is considered. Using the method of generating functions, we find an expression for the number of solutions of a Diophantine equation. As a corollary, this result implies the well-known Sylvester–Gallai theorem. In addition, we obtain not only an expression for the Frobenius number, but also formulas for those values of the variables for which this number is attained. The problems in this paper are closely related to discrete optimization problems as well as cryptographic information security methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. J. Sylvester, “Problem 7382,” Educ. Times J. Coll. Preceptors 36 (266), 177 (1883).

    Google Scholar 

  2. W. J. Curran Sharp, “Problem 7382, solution,” Educ. Times J. Coll. Preceptors 36 (271), 315 (1883).

    Google Scholar 

  3. J. J. Sylvester, Problem 7382, in Mathematical Questions with Their Solutions: from the “Educational Times,” (C. F. Hodgson, London, 1884), 41, p. 21.

  4. V. I.Arnol’d, Experimental Observations of Mathematical Facts (MTsNMO, Moscow, 2006) [in Russian].

    Google Scholar 

  5. V. M. Fomichev and D. A. Mel’nikov, Cryptographic Information Security Methods (Yurait, Moscow, 2017) [in Russian].

    Google Scholar 

  6. P. Erdös and R. L.Graham, “On a linear Diophantine problem of Frobenius,” Acta Arithmetica 21, 399–408 (1972).

    Article  MathSciNet  Google Scholar 

  7. J. R. Alfonsin, The Diophantine Frobenius problem (Oxford Univ. Press, London, 2005).

    Book  MATH  Google Scholar 

  8. V. I. Arnold, “Arithmetical turbulence of self-similar fluctuations statistics of large Frobenius numbers of additive semigroups of integers,” Moscow Math. J. 7 (2), 173–193 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  9. V. I. Arnold, “Weak asymptotics for the numbers of solutions of Diophantine problems,” Funct. Anal. Appl. 33 (4), 292–293 (1999).

    Article  MathSciNet  Google Scholar 

  10. V. M. Fomichev, “Estimating the exponent of some graphs using Frobenius numbers for three arguments,” Prikl. Diskretn. Mat. (2), 88–96 (2014).

  11. F. Curtis, “On formulas for the Frobenius number of a numerical semigroup,” Math. Scand. 67, 190–192 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Tripathi, “Formulae for the Frobenius number in three variables,” J. Number Theory 170, 368–389 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. P. Savel’ev and V. N. Shevchenko, The Frobenius problem for three numbers, in Coll. Pap. Int. Sci.-Pract. Conf. (Efir, Mos, 2019), pp. 10–15 [in Russian].

  14. K. Song, “The Frobenius problem for numerical semigroups generated by the Thabit numbers of the first, second kind base \( b \) and the Cunningham numbers,” Bull. Korean Math. Soc. 57 (3), 623–647 (2020).

    MathSciNet  MATH  Google Scholar 

  15. J. C. Rosales, M. B. Branco, and D. Torrão, “The Frobenius problem for Thabit numerical semigroups,” J. Number Theory 155, 85–99 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. C. Rosales, M. B. Branco, and D. Torrão, “The Frobenius problem for repunit numerical semigroups,” Ramanujan J. 40, 323–334 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. C. Rosales, M. B. Branco, and D. Torrão, “The Frobenius problem for Mersenne numerical semigroups,” Math. Z. 286, 741–749 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Nijenhuis, “A minimal-path algorithm for the “money changing problem,” Am. Math. Mon. 86, 832–835 (1979).

    MathSciNet  MATH  Google Scholar 

  19. V. M. Fomichev, “Frobenius-equivalent primitive sets of numbers,” Prikl. Diskretn. Mat. (1), 20–26 (2014).

  20. G. P. Egorychev, Integral Representation and Computing of Combinatorial Sums (Nauka, Novosibirsk, 1977) [in Russian].

    MATH  Google Scholar 

  21. V. K. Leontiev and E. N. Gordeev, “Generating functions in the knapsack problem,” Dokl. Math. 98, 364–366 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  22. Eh. N. Gordeev and V. K. Leontiev, “On combinatorial properties of the knapsack problem,” Comput. Math. Math. Phys. 59 (8), 1380–1388 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Riordan, An Introduction to Combinatorial Analysis (John Wiley & Sons, New York, 1958; Izd. Inostr. Lit., Moscow, 1963).

    MATH  Google Scholar 

  24. Yu. V. Sidorov, M. V. Fedoryuk, and M. I. Shabunin, Lectures on the Theory of Functions of a Complex Variable (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  25. G. H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work (AMS, Providence, RI, 1999; Inst. Komput. Issled., Moscow, 2002).

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20–01–00645.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Leontiev.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leontiev, V.K. On the Frobenius Problem. J. Appl. Ind. Math. 16, 267–275 (2022). https://doi.org/10.1134/S1990478922020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478922020089

Keywords

Navigation