Skip to main content
Log in

On the Determination of the Velocity and Elastic Parameters of a Medium in the Focal Zone from Earthquake Hodographs

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We consider the inverse kinematic problem of seismics (IKPS) with internal sources. It consists in determining the velocities of the longitudinal and transverse waves by the travel times from earthquake sources in the focal zone to a group of seismic stations. We propose an algorithm for the numerical solution of the problem which bases on the eikonal equation and the technology of smoothing multidimensional splines, which give an approximation of the velocity structure of the focal zone. The paper presents some theoretical results that substantiate the algorithm for solving the problem by approximation methods on using smoothing with multidimensional splines from data on irregular grids. We describe the results of the numerical solution of the problem, the calculations with real data on earthquakes in the focal zone, and give the estimates of the velocity and elastic parameters of a medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. Herglotz, “Über das Benndorfsche Problem der Fortpflanzungsgeschwindigkeit der Erdbebenstrahlen,” Zeitschr. für Geophys. 8, 145–147 (1907).

    MATH  Google Scholar 

  2. E. Wiechert, “Bestimmung des Weges der Erdbebenwelleh on Erdinnern. L Theoretisches,” Phys. Zeitschr. 11, 294–304 (1910).

    MATH  Google Scholar 

  3. M. M. Lavrentyev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis (Nauka, Moscow, 1980; Amer. Math. Soc., Providence, 1986).

    Google Scholar 

  4. V. G. Romanov, Inverse Problems of Mathematical Physics (Nauka, Moscow, 1984; VNU Science Press, Utrecht, 1987).

    MATH  Google Scholar 

  5. S. V. Goldin, Geometrical Seismics (IPGG SB RAS, Novosibirsk, 2017) [in Russian].

    Google Scholar 

  6. G. Nolet, Seismic Tomography (D. Reidel Publ. Co., Dordrecht, 1987).

    Book  Google Scholar 

  7. D. Royer and E. Dieulesaint, Elastic Waves in Solids (Nauka, Moscow, 1982; Berlin, Springer, 1996).

    MATH  Google Scholar 

  8. V. K. Andreev, Mathematical Models of Continuum Mechanics (Lan, St. Petersburg, 2015) [in Russian].

    Google Scholar 

  9. Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media. Wave Phenomena (Nauka, Moscow, 1980; Springer, Berlin, 1990).

    Google Scholar 

  10. N. V Butenin and N. A. Fufaev, Introduction to Analytical Mechanics (Nauka, Moscow, 1991) [in Russian].

    MATH  Google Scholar 

  11. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Methods and Applications (Springer-Verlag, GTM 93, Part 1, 1984; GTM 104, Part 2, 1985; GTM 124, Part 3, 1990; Nauka, Moscow, 1986).

  12. M. L. Gerver and V. M. Markushevich, “Properties of the Hodograph from a Surface Source,” in Some Direct and Inverse Problems of Seismology (Nauka, Moscow, 1968), pp. 15–63.

  13. V. M. Markushevich, “Characteristic Properties of the Hodograph from a Deep Source,” in Some Direct and Inverse Problems of Seismology (Nauka, Moscow, 1968), pp. 64–77.

  14. Yu. E. Anikonov, “On One Problem of Determining the Riemannian Metric,” Dokl. Akad. Nauk SSSR 204 (6), 1287–1288 (1972).

    MathSciNet  Google Scholar 

  15. Yu. E. Anikonov, Some Methods for Investigating Multivariate Inverse Problems for Differential Equations (Nauka, Novosibirsk, 1978) [in Russian].

    Google Scholar 

  16. P. P. Belinskii, “On Continuity of Spatial Quasiconformal Mappings and Liouville’s Theorem,” Dokl. Akad. Nauk SSSR 147 (5), 1003–1004 (1962).

    MathSciNet  Google Scholar 

  17. Yu. G. Reshetnyak, “On Stability in Liouville’s Theory of Conformal Mappings of Space,” Dokl. Akad. Nauk SSSR 152 (2), 286–287 (1963).

    MathSciNet  Google Scholar 

  18. A. V. Pogorelov, Extrinsic Geometry of Convex Surfaces (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  19. Yu. E. Anikonov, N. B. Pivovarova, and L. B. Slavina, “Three-Dimensional Velocity Field of the Focal Zone of Kamchatka,” in Mathematical problems of geophysics, No. 5, Part 1 (Vychisl. Tsentr, Sibir. Otdel. Akad. Nauk SSSR, Novosibirsk, 1974), pp. 92–117.

  20. A. V. Kabannik, Yu. A. Orlov, and V. A. Cheverda, “Numerical Solution of the Problem of Linear Seismic Tomography on Transmitted Waves: The Case of Incomplete Data,” Sibir. Zh. Ind. Mat. 7 (2), 54–67 (2004).

    MATH  Google Scholar 

  21. H. Wendland, Scattered Data Approximation (Cambridge Univ. Press, Cambridge, 2005).

    MATH  Google Scholar 

  22. A. I. Rozhenko, Theory and Algorithms of Variational Spline Approximation (Inst. Vychisl. Mat. Mat. Geofiz., Novosibirsk, 2005) [in Russian].

    Google Scholar 

  23. M. I. Ignatov and A. B. Pevny, Natural Splines of Many Variables (Nauka, Leningrad, 1991) [in Russian].

    Google Scholar 

  24. R. Schaback, Native Hilbert Spaces for Radial Basis Functions. I. New Developments in Approximation Theory (Birkhäuser, Basel, 1999), pp. 255–282.

  25. A. I. Rozhenko, “Comparison of Radial Basis Functions,” Sibir. Zh. Vychisl. Mat. 21 (3), 273–292 (2018) [Numer. Anal. Appl. 11 (3), 220–235 (2018)].

    Article  MathSciNet  Google Scholar 

  26. Yu. S. Volkov and V. L. Miroshnichenko, “Construction of a Mathematical Model of the Universal Characteristic of a Radial-Axial Hydraulic Turbine,” Sibir. Zh. Ind. Mat. 1 (1), 77–88 (1998).

    MATH  Google Scholar 

  27. Yu. E. Anikonov, V. V. Bogdanov, E. Yu. Derevtsov, V. L. Miroshnichenko, N. B. Pivovarova, and L. B. Slavina, “Some Approaches to Numerical Solution for the Multidimensional Inverse Kinematic Problem of Seismics with Inner Sources,” J. Inverse Ill-Posed Probl. 17 (3), 209–238 (2009).

    Article  MathSciNet  Google Scholar 

  28. V. V. Bogdanov, W. V. Karsten, V. L. Miroshnichenko, and Yu. S. Volkov, “Application of Splines for Determining the Velocity Characteristic of a Medium from a Vertical Seismic Survey,” Central European J. Math. 11 (4), 779–786 (2013).

    MathSciNet  MATH  Google Scholar 

  29. A. I. Rozhenko and T. S. Shaidorov, “On Spline Approximation with a Reproducing Kernel Method,” Sibir. Zh. Vychisl. Mat. 16 (4), 365–376 (2013) [Numer. Analysis Appl. 6 (4), 314–323 (2013)].

    Article  Google Scholar 

  30. J. O. Aasen, “On the Reduction of a Symmetric Matrix to Tridiagonal Form,” BIT 11 (3), 233–242 (1971).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors were supported within the framework of the State Contract of the Sobolev Institute of Mathematics (projects Nos. 0314–2019–0011 and 0314–2019–0013) and partially by the Russian Foundation for Basic Research (RFBR) and the German Science Foundation (DFG) (joint German–Russian research project 19–51–12008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. E. Anikonov, V. V. Bogdanov, Yu. S. Volkov or E. Yu. Derevtsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikonov, Y.E., Bogdanov, V.V., Volkov, Y.S. et al. On the Determination of the Velocity and Elastic Parameters of a Medium in the Focal Zone from Earthquake Hodographs. J. Appl. Ind. Math. 15, 569–585 (2021). https://doi.org/10.1134/S1990478921040013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478921040013

Keywords

Navigation