Skip to main content
Log in

Functionally Invariant Solutions to Maxwell’s System: Dependence on Time

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We consider the problem of finding the generalized functionally invariant solutions to Maxwell’s equations. The solutions found contain some functional arbitrariness that can be used for determining the parameters of Maxwell’s system (the dielectric and magnetic constants).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Neshchadim, “Functionally Invariant Solutions to Maxwell’s System,” Sibirsk. Zh. Industr. Mat. 20 (1), 66–74 (2017) [J. Appl. Indust. Math. 11 (1), 107–114 (2017)].

    MathSciNet  MATH  Google Scholar 

  2. N. P. Erugin and M. M. Smirnov, “Functionally Invariant Solutions of Differential Equations,” Differentsial’nye Uravneniya 17 (5), 853–865 (1981) [Differential Equations 17, 563–573 (1981)].

    MathSciNet  MATH  Google Scholar 

  3. V. M. Babichand V. S. Buldyrev, Asymptotic Methods in Problems of Diffraction of Short Waves (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  4. V. M. Babich, “The Multidimensional WKB Method or Ray Method. Its Analogs and Generalizations. Partial Differential Equations—5,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 34, 93–134 (1988).

    MATH  Google Scholar 

  5. M. V. Neshchadim, “Classes of Generalized Functionally Invariant Solutions of the Wave Equation. I,” Siberian Electron. Math. Reports 10, 418–435 (2013) [see http://semr.math.nsc.ru/v10/p418-435.pdf].

    MathSciNet  MATH  Google Scholar 

  6. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II: Partial Differential Equations (Interscience, New York, 1962; Mir, Moscow, 1964).

    MATH  Google Scholar 

  7. V. I. Smirnov and S. L. Sobolev, “A New Method for Solving the Planar Problem of Elastic Vibrations,” Trudy Seismolog. Inst. Akad. Nauk SSSR 20, 1–37 (1932).

    Google Scholar 

  8. V. I. Smirnov and S. L. Sobolev, “On the Application of a New Method to the Study of Elastic Vibrations in Space in the Presence of Axial Symmetry,” Trudy Seismolog. Inst. Akad. Nauk SSSR 29, 43–51 (1933).

    Google Scholar 

  9. S. L. Sobolev, “Functionally Invariant Solutions to the Wave Equation,” Trydy Fiz.-Mat. Inst. Steklov. 5, 259–264 (1934).

    Google Scholar 

  10. M. S. Shneerson, “Maxwell’s Equations and Functionally Invariant Solutions to the Wave Equation,” Differentsial’nye Uravneniya 4 (4), 743–758 (1968).

    MathSciNet  Google Scholar 

  11. N. T. Stel’mashuk, “Construction of Functionally Invariant Solutions to Maxwell’s System for an Electromagnetic Field in Vacuum,” Vestnik Akad. Nauk BSSR. Ser. Fiz.-Mat. Nauki No. 4, 35–39 (1974).

    MathSciNet  Google Scholar 

  12. M. V. Neshchadim, “Solutions to Maxwell’s System with Zero Invariants,” Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. 6 (3), 59–61 (2006).

    MathSciNet  MATH  Google Scholar 

  13. Yu. E. Anikonov and M. V. Neshchadim, “On Analytical Methods in the Theory of Inverse Problems for Hyperbolic Equations. I,” Sibirsk. Zh. Industr. Mat. 14 (1), 27–39 (2011) [J. Appl. Indust. Math. 5 (4), 506–518 (2011)].

    MathSciNet  MATH  Google Scholar 

  14. Yu. E. Anikonov and M. V. Neshchadim, “On Analytical Methods in the Theory of Inverse Problems for Hyperbolic Equations. II,” Sibirsk. Zh. Industr. Mat. 14 (2), 28–33 (2011) [J. Appl. Indust. Math. 6 (1), 6–11 (2012)].

    MATH  Google Scholar 

  15. L. V. Ovsyannikov, Group Analysis of Differential Equations (Nauka, Moscow, 1978; Academic Press, New York, 1982).

    MATH  Google Scholar 

  16. P. J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1986; Mir, Moscow, 1989).

    Book  MATH  Google Scholar 

  17. M. V. Neshchadim, “Equivalent Transformations and Some Exact Solutions to the System of Maxwell’s Equations,” Selçuk J. Appl. Math. 3 (2), 99–108 (2002).

    MathSciNet  MATH  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon Press, Oxford, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Neshchadim or A. A. Simonov.

Additional information

Russian Text © The Author(s), 2019, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2019, Vol. XXII, No. 2, pp. 49–61.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neshchadim, M.V., Simonov, A.A. Functionally Invariant Solutions to Maxwell’s System: Dependence on Time. J. Appl. Ind. Math. 13, 290–301 (2019). https://doi.org/10.1134/S1990478919020108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919020108

Keywords

Navigation