Skip to main content
Log in

Optimal Control of the Location of a Thin Rigid Inclusion in the Equilibrium Problem of an Inhomogeneous Two-Dimensional Body with a Crack

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Under study is some two-dimensional model describing equilibriumof a composite solid with a thin rigid inclusion and a crack. A boundary condition of Signorini’s type is prescribed on the crack curve. For a family of corresponding variational problems, the dependence is analyzed of their solutions on the parameter characterizing the location of the rigid inclusion. The existence of solution of the optimal control problem is proved. For this problem, the quality functional is defined with the help of an arbitrary continuous functional on the solution space, while the location of the inclusion is chosen as the control parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids (WIT-Press, Southampton, Boston, 2000).

    Google Scholar 

  2. A.M. Khludnev, Problems of Elasticity in Nonsmooth Domains (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  3. A. M. Khludnev, L. Faella, and T. S. Popova, “Junction Problem for Rigid and Timoshenko Elastic Inclusions in Elastic Bodies,” Math. Mech. Solids. 22 (4), 737–750 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. M. Khludnev and T. S. Popova, “Junction Problem for Euler–Bernoulli and TimoshenkoElastic Inclusions in Elastic Bodies,” Quart. Appl.Math. (2016) 74 (4), 705–718.

    Google Scholar 

  5. E. V. Pyatkina, “On a Control Problem for a Two-Layered Elastic Body with a Crack,” Sibir. Zh. Chist. i Prikl. Mat. 16 (4), 103–112 (2016).

    MathSciNet  MATH  Google Scholar 

  6. V. A. Kovtunenko and G. Leugering, “A Shape-Topological Control Problem for Nonlinear Crack-Defect Interaction: The Antiplane Variational Model,” SIAM J. Control Optim. 54 (3), 1329–1351 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Popova and G. A. Rogerson, “On the Problem of a Thin Rigid Inclusion Embedded in a MaxwellMaterial,” Z. Angew.Math. Phys. 67 (4), 105 (2016), DOI: 10.1007/s00033-016-0700-9.

    Article  MATH  Google Scholar 

  8. A. M. Khludnev and G. Leugering, “On Elastic Bodies with Thin Rigid Inclusions and Cracks,” Math. Methods Appl. Sci. 33 (16), 1955–1967 (2010).

    MathSciNet  MATH  Google Scholar 

  9. E.M. Rudoy, “Shape Derivative of the Energy Functional in a Problem for a Thin Rigid Inclusion in an Elastic Body,” Z. Angew.Math. Phys. 66 (4), 1923–1937 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. N. P. Lazarev, H. Itou, and N. V. Neustroeva, “Fictitious Domain Method for an Equilibrium Problem of the Timoshenko-Type Plate with a Crack Crossing the External Boundary at Zero Angle,” Japan J. Indust. Appl. Math. 33 (1), 63–80 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  11. N. P. Lazarev, “Shape Sensitivity Analysis of the Energy Integrals for the Timoshenko-Type Plate Containing a Crack on the Boundary of a Rigid Inclusion,” Z. Angew.Math. Phys. 66 (4), 2025–2040 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  12. N. V. Neustroeva, “A Rigid Inclusion in the Contact Problem for Elastic Plates,” Sibir. Zh. Industr. Mat. 12 (4), 92–105 (2009) [J. Appl. Indust.Math. 4 (4), 526–538 (2010)].

    MathSciNet  MATH  Google Scholar 

  13. L. Faella and A. M. Khludnev, “Junction Problem for Elastic and Rigid Inclusions in Elastic Bodies,” Math. Methods Appl. Sci. 39 (12), 3381–3390 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  14. V. V. Shcherbakov, “The Griffith Formula and J-Integral for Elastic Bodies with Timoshenko Inclusions,” Z. Angew.Math. Mech. 96 (11), 1306–1317 (2016).

    Article  MathSciNet  Google Scholar 

  15. H. Itou and A. M. Khludnev, “On Delaminated Thin Timoshenko Inclusions inside Elastic Bodies,” Math. Methods Appl. Sci. 39 (17), 4980–4993 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. V. Shcherbakov, “ShapeOptimization ofRigid Inclusions for Elastic Plates with Cracks,” Z. Angew.Math. Phys. 67, 71 (2016), DOI: 10.1007/s00033-016-0666-7.

    Article  Google Scholar 

  17. N. P. Lazarev, “Optimal Control of the Thickness of a Rigid Inclusion in Equilibrium Problems for Inhomogeneous Two-Dimensional Bodies with a Crack,” Z. Angew.Math. Mech. 96 (4), 509–518 (2016).

    Article  MathSciNet  Google Scholar 

  18. N. P. Lazarev and E. M. Rudoy, “Optimal Size of a Rigid Thin Stiffener Reinforcing an Elastic Plate on the Outer Edge,” Z. Angew.Math. Mech. 97 (9), 1120–1127 (2017).

    Article  MathSciNet  Google Scholar 

  19. N. P. Lazarev, “Existence of an Optimal Size of a Delaminated Rigid Inclusion Embedded in the Kirchhoff–Love Plate,” in Boundary Value Problems, Ed. by R. P. Agarwal, K. Perera, and V. Radulescu, No. 180 (2015); https://www.springer.com/mathematics/analysis/journal/13661.

    Google Scholar 

  20. A. M. Khludnev, A. A. Novotny, J. Sokolowski, and A. Zochowski, “Shape and Topology Sensitivity Analysis for Cracks in Elastic Bodies on Boundaries of Rigid Inclusions,” J. Mech. Phys. Solids. 57 (10), 1718–1732 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. M. Khludnev and A. Negri, “Optimal Rigid Inclusion Shapes in Elastic Bodies with Cracks,” Z. Angew. Math. Phys. 64 (1), 179–191 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. M. Khludnev, “Shape Control of Thin Rigid Inclusions and Cracks in Elastic Bodies,” Arch. Appl.Mech. 83 (10), 1493–1509 (2013).

    Article  MATH  Google Scholar 

  23. A.M. Khludnev, “Optimal Control of Crack Growth in Elastic Body with Inclusions,” European J. Mech. A. Solids 29 (3), 392–399 (2010).

    Article  MathSciNet  Google Scholar 

  24. G. Leugering, J. Sokolowski, and A. Zochowski, “Control of Crack Propagation by Shape-Topological Optimization,” DiscreteContin. Dyn. Syst.Ser.A. 35 (6), 2625–2657 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Hlavaček, J. Haslinger, J. Nečas, and J. Lovišek, Solution of Variational Inequalities in Mechanics (Springer, New York, 1988).

    Book  MATH  Google Scholar 

  26. V. P. Mikhailov, Partial Differential Equations (Nauka, Moscow, 1976) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. P. Lazarev or G. M. Semenova.

Additional information

Russian Text © N.P. Lazarev, G.M. Semenova, 2019, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2019, Vol. XXII, No. 1, pp. 53–62.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, N.P., Semenova, G.M. Optimal Control of the Location of a Thin Rigid Inclusion in the Equilibrium Problem of an Inhomogeneous Two-Dimensional Body with a Crack. J. Appl. Ind. Math. 13, 76–84 (2019). https://doi.org/10.1134/S1990478919010095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919010095

Keywords

Navigation