Skip to main content
Log in

On the exact value of the length of the minimal single diagnostic test for a particular class of circuits

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Under consideration is the problem of synthesis of irredundant logic circuits in the basis {&, ∨, ¬} which implement Boolean functions of n variables and allow some short single diagnostic tests regarding uniform constant faults at outputs of gates. For each Boolean function permitting implementation by an irredundant circuit, the minimal possible length value of such a test is found. In particular, we prove that this value is at most 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Borodina, “Synthesis of Easily-Tested Circuits in the Case of Single-Type Constant Malfunctions at the Element Outputs,” Vestnik Moskov. Univ. Ser. 15, No. 1, 40–44 (2008) [Moscow Univ. Comput. Math. Cybern. 32 (1), 42–46 (2008)].

    MathSciNet  MATH  Google Scholar 

  2. Yu. V. Borodina, “Circuits Admitting Single-Fault Tests of Length 1 under Constant Faults at Outputs of Elements,” Vestnik Moskov. Univ. Ser. 1, No. 5, 49–52 (2008) [Moscow Univ. Math. Bull. 63 (5), 202–204 (2008)].

    MathSciNet  MATH  Google Scholar 

  3. Yu. V. Borodina and P. A. Borodin, “Synthesis of Easily Testable Circuits over the Zhegalkin Basis in the Case of Constant Faults of Type 0 at outputs of Elements,” Diskretn. Mat. 22 (3), 127–133 (2010) [Discrete Math. Appl. 20 (4), 441–449 (2010)].

    Article  MATH  Google Scholar 

  4. S. S. Kolyada, “Upper Bounds on the Length of Fault Detection Tests for Logic Circuits,” Candidate’s Dissertation in Mathematics and Physics (Moskov. Gos. Univ., Moscow, 2013).

    Google Scholar 

  5. N. P. Red’kin, “On Complete Fault Detection Tests for Logic Circuits,” Vestnik Moskov. Univ. Ser. 1. Mat. Mekh. No. 1, 72–74 (1986).

    MATH  Google Scholar 

  6. N. P. Red’kin, “On Circuits Admitting Short Tests,” Vestnik Moskov. Univ. Ser. 1. Mat. Mekh. No. 2, 17–21 (1988).

    Google Scholar 

  7. N. P. Red’kin, “On Complete Fault Detection Tests for Logic Circuits,” in Mathematical Problems of Cybernetics, Vol. 2 (Nauka, Moscow, 1989), pp. 198–222.

    Google Scholar 

  8. N. P. Red’kin, Reliability and Diagnosis of Circuits (Moskov. Gos. Univ., Moscow, 1992) [Russian].

    MATH  Google Scholar 

  9. N. P. Red’kin, “On Single-Fault Diagnostic Tests for One-Type Constant Faults at Outputs of Gates,” Vestnik Moskov. Univ., Ser. 1. Mat. Mekh. No. 5, 43–46 (1992).

    MATH  Google Scholar 

  10. D. S. Romanov, “On the Synthesis of Circuits Admitting Complete Fault Detection Test Sets of Constant Length under Arbitrary Constant Faults at the Outputs of the Gates,” Diskretn. Mat. 25 (2), 104–120 (2013) [Discrete Math. Appl. 23 (3–4), 343–362 (2013)].

    Article  MATH  Google Scholar 

  11. D. S. Romanov, “Method of Synthesis of Easily Testable Circuits Admitting Single Fault Detection Tests of Constant Length,” Diskretn. Mat. 26 (2), 100–130 (2014) [Discrete Math. Appl. 24 (4), 227–251 (2014)].

    Article  MathSciNet  MATH  Google Scholar 

  12. A. B. Ugol’nikov, The Post Classes (Izd. TsPIMekh.-Mat. Fak. MGU, Moscow, 2008) [Russian].

    MATH  Google Scholar 

  13. I. A. Chegis and S. V. Yablonskii, “Logical Methods for Control of Electric Circuits,” Trudy Mat. Inst. Steklov. 51, 270–360 (1958).

    MathSciNet  Google Scholar 

  14. S. V. Yablonskii, “Reliability and Monitoring of Control Systems,” in Proceedings of All-Union Seminar on Discrete Mathematics and Its Applications, Moscow, Russia, January 31–February 2, 1984 (Moskov. Gos. Univ., Moscow, 1986), pp. 7–12.

    Google Scholar 

  15. S. V. Yablonskii, “Certain Questions of Reliability and Monitoring of Control Systems,” in Mathematical Problems of Cybernetics, Vol. 1 (Nauka, Moscow, 1988), pp. 5–25.

    Google Scholar 

  16. S. Das Gupta, C. R. P. Hartmann, and L. D. Rudolph, “Dual-Mode Logic for Function-Independent Fault Testing,” IEEE Trans. Comput. 29 (11), 1025–1029 (1980).

    MathSciNet  MATH  Google Scholar 

  17. V. Geetha, N. Devarajan, and P. N. Neelakantan, “Network Structure for Testability Improvement in Exclusive-OR Sum of Products Reed–Muller Canonical Circuits,” Internat. J. Engng. Res. Gen. Sci. 3 (3), 368–378 (2015).

    Google Scholar 

  18. J. P. Hayes, “On Modifying Logic Networks to Improve Their Diagnosability,” IEEE Trans. Comput. 23 (1), 56–62 (1974).

    Article  MathSciNet  Google Scholar 

  19. T. Hirayama, G. Koda, Y. Nishitani, and K. Shimizu, “Easily Testable Realization Based on Single-Rail-Input OR-AND-EXOR Expressions,” IEICE Trans. Inform. Syst. E82-D (9), 1278–1286 (1999).

    Google Scholar 

  20. A. K. Jameil, “A New Single Stuck Fault Detection Algorithm for Digital Circuits,” Internat. J. Engng. Res. Gen. Sci. 3 (1), 1050–1056 (2015).

    Google Scholar 

  21. P. N. Neelakantan and A. Ebenezer Jeyakumar, “Single Stuck-at Fault Diagnosing Circuit of Reed–Muller Canonical Exclusive-or Sum of Product Boolean Expressions,” J. Comput. Sci. 2 (7), 595–599 (2006).

    Article  Google Scholar 

  22. N. P. Rahagude, “Integrated Enhancement of Testability and Diagnosability for Digital Circuits,” Mast. Sci. Dissertation (VA Polytech. Inst. State Univ., Blacksburg, VA, 2010).

    Google Scholar 

  23. H. Rahaman, D. K. Das, and B. B. Bhattacharya, “Testable Design of AND-EXOR Logic Networks with Universal Test Sets,” Comput. Electr. Engng. 35 (5), 644–658 (2009).

    Article  MATH  Google Scholar 

  24. S. M. Reddy, “Easily Testable Realizations for Logic Functions,” IEEE Trans. Comput. 21 (11), 1183–1188 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  25. K. K. Saluja and S. M. Reddy, “On Minimally Testable Logic Networks,” IEEE Trans. Comput. 23 (5), 552–554 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  26. K. K. Saluja and S. M. Reddy, “Fault Detecting Test Sets for Reed–Muller Canonic Networks,” IEEE Trans. Comput. 24 (10), 995–998 (1975).

    Article  MathSciNet  Google Scholar 

  27. S. P. Singh and B. B. Sagar, “Stuck-at Fault Detection in Combinational Network Coefficients of the RMC with Fixed Polarity (Reed–Muller Coefficients),” Intern. J. Emerg. Trends Electr. Electron. 1 (3), 93–96 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Popkov.

Additional information

Original Russian Text © K.A. Popkov, 2017, published in Diskretnyi Analiz i Issledovanie Operatsii, 2017, Vol. 24, No. 3, pp. 80–103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popkov, K.A. On the exact value of the length of the minimal single diagnostic test for a particular class of circuits. J. Appl. Ind. Math. 11, 431–443 (2017). https://doi.org/10.1134/S1990478917030140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478917030140

Keywords

Navigation