Skip to main content
Log in

Outburst Cycle of the Dwarf Nova SS Cygni

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

Extensive observational data obtained to date is analyzed with special attention given to space observations. The spectral type of the white dwarf is estimated and it is concluded that accretion of matter on it is the only source of the x-ray flux in the system. The rotation of the secondary is shown to be synchronous and therefore its illumination by hard x-rays results in the formation of stellar wind. This is the main mechanism of mass transfer onto the white dwarf. The geometry of the system prevents the formation of the disk by stellar wind. Instead, stellar wind forms a quasispherical envelope whose variability influences the outburst process. Based on these conclusions, the properties of the system are interpreted, which so far have remained unexplained: short-term appearance of peculiar spectrum during the rising phase of the outburst, rather constant width of absorption lines during the outburst, decrease of the width of emission lines during the outburst, variation of the x-ray and ultraviolet fluxes during ordinary and low-amplitude anomalous outbursts, and, finally, the quasiperiodicity of the outbursts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Ricketts, A. R. King, and D. J. Raine, Monthly Notices Royal Astron. Soc. 186, 233 (1979).

    Article  ADS  Google Scholar 

  2. G. T. Bath and J. E. Pringle, in Interacting Binary Stars, Eds. J. E. Pringle and R. A. Wade (Cambridge University Press, Cambridge, 1985), p.177.

  3. D. J. Collins and P. J. Wheatley, Monthly Notices Royal Astron. Soc. 402, 1816 (2010).

    Article  ADS  Google Scholar 

  4. D. Fertig, K. Mukai, T. Nelson, and J. K. Cannizzo, Publ. Astron. Soc. Pacific 123, 1054 (2011).

    Article  ADS  Google Scholar 

  5. J. E. Pringle, F. M. Bateson, B. J. M. Hassall, et al., Monthly Notices Royal Astron. Soc. 225, 73 (1987).

    Article  ADS  Google Scholar 

  6. J. H. Swank, E. A. Boldt, S. S. Holt, et al., Astrophys. J. Lett. 226, L133 (1978).

    Article  ADS  Google Scholar 

  7. K. O. Mason, M. Lampton, P. Charles, and S. Bowyer, Astrophys. J. Lett. 226, L129 (1978).

    Article  ADS  Google Scholar 

  8. M. H. Jones and M. G. Watson, Monthly Notices Royal Astron. Soc. 257, 633 (1992).

    Article  ADS  Google Scholar 

  9. F. A. Cordova, T. J. Chester, I. R. Tuohy, and G. P. Garmire, Astrophys. J. 235, 163 (1980).

    Article  ADS  Google Scholar 

  10. C. W. Mauche, J. C. Raymond, and J. A. Mattei, Astrophys. J. 446, 842 (1995).

    Article  ADS  Google Scholar 

  11. C. W. Mauche, J. A. Mattei, and F. M. Bateson, ASP Conf. Ser. 229, 367 (2001).

    ADS  Google Scholar 

  12. P. J. Wheatley, C. W. Mauche, and J. A. Mattei, Monthly Notices Royal Astron. Soc. 345, 49 (2003).

    Article  ADS  Google Scholar 

  13. K. E. McGowan, W. C. Priedhorsky, and S. P. Trudolyubov, Astrophys. J. 601, 1100 (2004).

    Article  ADS  Google Scholar 

  14. I. G. Martinez-Pais, F. Giovannelli, C. Rossi, and S. Gaudenzi, Astron. and Astrophys. 291, 455 (1994).

    ADS  Google Scholar 

  15. F. Giovannelli, S. Gaudenzi, C. Rossi, and A. Piccioni, Acta Astronomica 33, 319 (1983).

    ADS  Google Scholar 

  16. M. A. Bitner, E. L. Robinson, and B. B. Behr, Astrophys. J. 662, 564 (2007).

    Article  ADS  Google Scholar 

  17. I. B. Voloshina, Pisma v Astronomicheskii Zhurnal 12, 219 (1986).

    ADS  Google Scholar 

  18. I. B. Voloshina and T. S. Khruzina, Astronomy Reports 44, 89 (2000).

    Article  ADS  Google Scholar 

  19. S. R. Heap, A. Boggess, A. Holm, et al., Nature 275, 385 (1978).

    Article  ADS  Google Scholar 

  20. R. S. Polidan and J. B. Holberg, Nature 309, 528 (1984).

    Article  ADS  Google Scholar 

  21. D. Chalonge, L. Divan, and L. V. Mirzoyan, Astrofizika 4, 603 (1968).

    ADS  Google Scholar 

  22. E. M. Sion, P. Godon, J. Myzcka, and W. P. Blair, Astrophys. J. Lett. 716, L157 (2010).

    Article  ADS  Google Scholar 

  23. T. E. Harrison, B. J. McNamara, P. Szkody, and R. L. Gilliland, Astron. J. 120, 2649 (2000).

    Article  ADS  Google Scholar 

  24. N. F. Voikhanskaya, Astron. Zh. 50, 786 (1973).

    ADS  Google Scholar 

  25. N. F. Voikhanskaya, Astrophysical Bulletin 67, 216 (2012).

    Article  ADS  Google Scholar 

  26. A. L. Kiplinger, Astrophys. J. 234, 997 (1979).

    Article  ADS  Google Scholar 

  27. F. Hinderer, Astronomische Nachrichten 277, 193 (1949).

    Article  ADS  Google Scholar 

  28. M. C. Zuckermann, Annales d’Astrophysique 24, 431 (1961).

    ADS  Google Scholar 

  29. U. Munari, T. Zwitter, and A. Bragaglia, Astron. and Astrophys. Suppl. 122, 495 (1997).

    Article  ADS  Google Scholar 

  30. R. J. Stover, E. L. Robinson, R. E. Nather, and T. J. Montemayor, Astrophys. J. 240, 597 (1980).

    Article  ADS  Google Scholar 

  31. F. V. Hessman, E. L. Robinson, R. E. Nather, and E.-H. Zhang, Astrophys. J. 286, 747 (1984).

    Article  ADS  Google Scholar 

  32. N. F. Vojkhanskaya, Astrofizicheskie Issledovaniia Izvestiya Spetsial’noj AstrofizicheskojObservatorii 9, 16 (1977).

    ADS  Google Scholar 

  33. N. F. Vojkhanskaja, Astrophysical Bulletin 72, 191 (2017).

    Article  ADS  Google Scholar 

  34. M. M. Basko and R. A. Sunyaev, Astrophys. and Space Sci. 23, 117 (1973).

    Article  ADS  Google Scholar 

  35. M. M. Basko, R. A. Sunyaev, and L. G. Titarchuk, Astron. and Astrophys. 31, 249 (1974).

    ADS  Google Scholar 

  36. K. S. Long, C. S. Froning, C. Knigge, et al., Astrophys. J. 630, 511 (2005).

    Article  ADS  Google Scholar 

  37. K. Yoshida, H. Inoue, and Y. Osaki, Publ. Astron. Soc. Japan 44, 537 (1992).

    ADS  Google Scholar 

  38. J. A. Nousek, C. J. Baluta, R. H. D. Corbet, et al., Astrophys. J. Lett. 436, L19 (1994).

    Article  ADS  Google Scholar 

  39. T. J. Ponman, T. Belloni, S. R. Duck, et al., Monthly Notices Royal Astron. Soc. 276, 495 (1995).

    Article  ADS  Google Scholar 

  40. S. Okada, R. Nakamura, and M. Ishida, Astrophys. J. 680, 695 (2008).

    Article  ADS  Google Scholar 

  41. C. W. Mauche, P. J. Wheatley, K. S. Long, et al., ASP Conf. Ser. 330, 355 (2005).

    ADS  Google Scholar 

  42. J. T. Clarke, S. Bowyer, and D. Capel, Astrophys. J. 287, 845 (1984).

    Article  ADS  Google Scholar 

  43. K. Mukai, A. Kinkhabwala, J. R. Peterson, et al., Astrophys. J. Lett. 586, L77 (2003).

    Article  ADS  Google Scholar 

  44. L. P. Presnyakov, Soviet Physics Uspekhi 19, 387 (1976).

    Article  ADS  Google Scholar 

  45. C. W. Mauche, Astrophys. J. 610, 422 (2004).

    Article  ADS  Google Scholar 

  46. A. H. Joy, Astrophys. J. 124, 317 (1956).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Voikhanskaya.

Additional information

Original Russian Text © N.F. Voikhanskaya, 2018, published in Astrofizicheskii Byulleten’, 2018, Vol. 73, No. 1, pp. 88–101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voikhanskaya, N.F. Outburst Cycle of the Dwarf Nova SS Cygni. Astrophys. Bull. 73, 84–97 (2018). https://doi.org/10.1134/S1990341318010078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341318010078

Keywords

Navigation