Skip to main content
Log in

On mechanisms separating stars into normal and chemically peculiar

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

The paper argues in favor of the assumption that magnetic and non-magnetic protostars, from which CP stars were formed, are the objects that had rotation velocities of the parent cloud V smaller than a critical value V c . At V greater than the critical value, differential rotation emerges in the collapsing protostellar cloud, which twists magnetic lines of force into an’ invisible’ toroidal shape and disturbs the stability of the atmosphere. In magnetic protostars, the loss of angular momentum is due to magnetic braking, while in metallic protostars, the loss of rotation momentum occurs due to tidal interactions with a close component. HgMn stars are most likely not affected by some braking mechanism, but originated from the slowest protostellar rotators. The boundary of V c where the differential rotation occurs is not sharp. The slower the protostar rotates, the greater the probability of suppressing the differential rotation and the more likely the possibility of CP star birth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Stȩpień, Astron. and Astrophys. 353, 227 (2000).

    ADS  Google Scholar 

  2. K. Stȩpień and J. D. Landstreet, Astron. and Astrophys. 384, 554 (2002).

    Article  ADS  Google Scholar 

  3. Y. V. Glagolevskij, Astrophysical Bulletin 72, 305 (2017).

    Article  ADS  Google Scholar 

  4. H. A. Abt, Publ. Astron. Soc. Pacific 77, 367 (1965).

    Article  ADS  Google Scholar 

  5. H. A. Abt and N. I. Morrell, Astrophys. J. Suppl. 99, 135 (1995).

    Article  ADS  Google Scholar 

  6. H. A. Abt and M. S. Snowden, Astrophys. J. Suppl. 25, 137 (1973).

    Article  ADS  Google Scholar 

  7. T. C. Mouschovias and E. V. Paleologou, Astrophys. J. 230, 204 (1979).

    Article  ADS  Google Scholar 

  8. H. A. Abt, Publ. Astron. Soc. Pacific 77, 367 (1965).

    Article  ADS  Google Scholar 

  9. D. L. Moss, Monthly Notices Royal Astron. Soc. 168, 61 (1974).

    Article  ADS  Google Scholar 

  10. D. L. Moss, Monthly Notices Royal Astron. Soc. 171, 303 (1975).

    Article  ADS  Google Scholar 

  11. Y. V. Glagolevskij and E. Gerth, Bull. Spec. Astrophys. Obs. 55, 38 (2003).

    ADS  Google Scholar 

  12. P. A. Sweet, Monthly Notices Royal Astron. Soc. 110, 548 (1950).

    Article  ADS  Google Scholar 

  13. J.-L. Tassoul and M. Tassoul, Astrophys. J. Suppl. 49, 317 (1982).

    Article  ADS  Google Scholar 

  14. G. Michaud, Astrophys. J. 258, 349 (1982).

    Article  ADS  Google Scholar 

  15. G. Michaud, D. Tarasick, Y. Charland, and C. Pelletier, Astrophys. J. 269, 239 (1983).

    Article  ADS  Google Scholar 

  16. A. V. Tutukov, Pis’ma Astron. Zh. 9, 160 (1983).

    ADS  Google Scholar 

  17. P. Bodenheimer, IAU Symp. 93, 5 (1981).

    ADS  Google Scholar 

  18. V. Petit, S. P. Owocki, G. A. Wade, et al., Monthly Notices Royal Astron. Soc. 429, 398 (2013).

    Article  ADS  Google Scholar 

  19. H. A. Abt and N. I. Morrell, Astrophys. J. Suppl. 99, 135 (1995).

    Article  ADS  Google Scholar 

  20. A. Uesugi and I. Fukuda, Memoirs Faculty of Sciences University of Kyoto 33, 205 (1970).

    ADS  Google Scholar 

  21. H. A. Abt, H. Levato, and M. Grosso, Astrophys. J. 573, 359 (2002).

    Article  ADS  Google Scholar 

  22. D. A. Bohlender, J. D. Landstreet, and I. B. Thompson, Astron. and Astrophys. 269, 355 (1993).

    ADS  Google Scholar 

  23. H. A. Abt, Astron. J. 122, 2008 (2001).

    Article  ADS  Google Scholar 

  24. M. E. Boyarchuk and I. M. Kopylov, Izv. Krymskoj Astrofizicheskoj Observatorii 31, 44 (1964).

    ADS  Google Scholar 

  25. H. Levato, S. Malaroda, N. Morrell, et al., Astron. and Astrophys. Suppl. 118, 231 (1996).

    Article  ADS  Google Scholar 

  26. E. Paunzen and H. M. Maitzen, Astron. and Astrophys. Suppl. 133, 1 (1998).

    Article  ADS  Google Scholar 

  27. Y. Y. Balega, V. V. Dyachenko, A. F. Maksimov, et al., Astrophysical Bulletin 67, 44 (2012).

    Article  ADS  Google Scholar 

  28. V. G. Klochkova and I. M. Kopylov, Sov. Astron. 29, 549 (1985).

    ADS  Google Scholar 

  29. Y. V. Glagolevskij, Astrophysics 53, 536 (2010).

    Article  ADS  Google Scholar 

  30. Y. V. Glagolevskij and A. F. Nazarenko, Astrophysical Bulletin 72, 2017 (in press).

    Google Scholar 

  31. M. R. Molnar, T. C. Stephens, and A. D. Mallama, Astrophys. J. 223, 185 (1978).

    Article  ADS  Google Scholar 

  32. Y. V. Glagolevskij, Astrophysical Bulletin 66, 144 (2011).

    Article  ADS  Google Scholar 

  33. Y. V. Glagolevskij, V. V. Leushin, G. A. Chuntonov, and D. Shulyak, Astronomy Letters 32, 54 (2006).

    Article  ADS  Google Scholar 

  34. G. A. Wade, J.-F. Donati, J. D. Landstreet, and S. L. S. Shorlin, Monthly Notices Royal Astron. Soc. 313, 851 (2000).

    Article  ADS  Google Scholar 

  35. Y. V. Glagolevskij, Astrophysical Bulletin 69, 305 (2014).

    Article  ADS  Google Scholar 

  36. M.-F. Nieva, Astron. and Astrophys. 550, A26 (2013).

    Article  ADS  Google Scholar 

  37. S. L. S. Shorlin, G. A. Wade, J.-F. Donati, et al., Astron. and Astrophys. 392, 637 (2002).

    Article  ADS  Google Scholar 

  38. E. F. Borra and J. D. Landstreet, Astrophys. J. Suppl. 42, 421 (1980).

    Article  ADS  Google Scholar 

  39. E. F. Borra, J. D. Landstreet, and I. Thompson, Astrophys. J. Suppl. 53, 151 (1983).

    Article  ADS  Google Scholar 

  40. G. A. Wade, P. North, G. Mathys, and S. Hubrig, Astron. and Astrophys. 314, 491 (1996).

    ADS  Google Scholar 

  41. O. Kochukhov, N. Piskunov, I. Ilyin, et al., Astron. and Astrophys. 389, 420 (2002).

    Article  ADS  Google Scholar 

  42. G. A. Wade, E. Neagu, and J. D. Landstreet, Astron. and Astrophys. 307, 500 (1996).

    ADS  Google Scholar 

  43. G. Giuricin, F. Mardirossian, and M. Mezzetti, Astron. and Astrophys. 135, 194 (1984).

    ADS  Google Scholar 

  44. V. V. Leushin, Y. V. Glagolevskij, and P. North, in Proc. Intern. Conf on Magnetic Fields of Chemically Peculiar and Related Stars, Nizhnij Arkhyz, Russia, 1999, Ed. by Y. V. Glagolevskij and I. I. Romanyuk (Moscow, 2000), pp. 173–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Glagolevskij.

Additional information

Original Russian Text © Yu.V. Glagolevskij, 2017, published in Astrofizicheskii Byulleten’, 2017, Vol. 72, No. 4, pp. 457–484.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glagolevskij, Y.V. On mechanisms separating stars into normal and chemically peculiar. Astrophys. Bull. 72, 418–446 (2017). https://doi.org/10.1134/S199034131704006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199034131704006X

Key words

Navigation