Skip to main content
Log in

Hydrodynamic model of a self-gravitating optically thick gas and dust cloud

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We propose an original mechanism of sustained turbulence generation in gas and dust clouds, the essence of which is the consistent provision of conditions for the emergence and maintenance of convective instability in the cloud. We considered a quasi-stationary one-dimensional model of a selfgravitating flat cloud with stellar radiation sources in its center. The material of the cloud is considered a two-component two-speed continuous medium, the first component of which, gas, is transparent for stellar radiation and is supposed to rest being in hydrostatic equilibrium, and the second one, dust, is optically dense and is swept out by the pressure of stellar radiation to the periphery of the cloud. The dust is specified as a set of spherical grains of a similar size (we made calculations for dust particles with radii of 0.05, 0.1, and 0.15 μm). The processes of scattering and absorption of UV radiation by dust particles followed by IR reradiation, with respect to which the medium is considered to be transparent, are taken into account. Dust-driven stellar wind sweeps gas outwards from the center of the cloud, forming a cocoon-like structure in the gas and dust. For the radiation flux corresponding to a concentration of one star with a luminosity of about 5 ×104 L per square parsec on the plane of sources, sizes of the gas cocoon are equal to 0.2–0.4 pc, and for the dust one they vary from tenths of a parsec to six parsecs. Gas and dust in the center of the cavity are heated to temperatures of about 50–60 K in the model with graphite particles and up to 40 K in the model with silicate dust, while the background equilibrium temperature outside the cavity is set equal to 10 K. The characteristic dust expansion velocity is about 1–7 kms−1. Three structural elements define the hierarchy of scales in the dust cocoon. The sizes of the central rarefied cavity, the dense shell surrounding the cavity, and the thin layer inside the shell in which dust is settling provide the proportions 1 : {1–30} : {10−7–10−6}. The density differentials in the dust cocoon (cavity–shell) are much steeper than in the gas one, dust forms multiple flows in the shell so that the dust caustics in the turning points and in the accumulation layer have infinite dust concentration. We give arguments in favor of unstable character of the inverse gas density distribution in the settled dust flow that can power turbulence constantly sustained in the cloud. If this hypothesis is true, the proposed mechanism can explain turbulence in gas and dust clouds on a scale of parsecs and subparsecs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.-M. Mac Low and R. S. Klessen, Rev. Modern Physics 76, 125 (2004).

    Article  ADS  Google Scholar 

  2. B. Elmegreen, Astrophys. J. 577, 206 (2002).

    Article  ADS  Google Scholar 

  3. E. A. Bergin and M. Tafalla, Annual Rev. Astron. Astrophys. 45, 339 (2007).

    Article  ADS  Google Scholar 

  4. E. Vazquez-Semadeni, arXiv:1202.4498.

  5. A. Burkert, Comptes Rendus Physique 7, 433 (2006).

    Article  ADS  Google Scholar 

  6. N. Schneider, Ph. André, V. Könyves, et al., Astrophys. J. 766, L17 (2013).

    Article  ADS  Google Scholar 

  7. A. Brandenburg and A. Nordlund, Reports on Progress in Physics 74, 046901 (2011).

    Article  ADS  Google Scholar 

  8. N. G. Bochkarev, Foundations of the Physics of the Interstellar Medium (Librokom Publ., Moscow, 2010).

    Google Scholar 

  9. E. V. Zhukova, A. M. Zankovich, I. G. Kovalenko, and K. M. Firsov, Vestnik Volgograd. gos. univer., Ser. 1, Matematika, Fizika, No. 1(16), 57 (2012).

    Google Scholar 

  10. D. Krüger, A. Gauger, and E. Sedlmayr, Astron. and Astrophys. 290, 573 (1994).

    ADS  Google Scholar 

  11. D. Krüger and E. Sedlmayr, Astron. and Astrophys. 321, 557 (1997).

    ADS  Google Scholar 

  12. N. Mastrodemos, M. Morris, and J. Castor, Astrophys. J. 468, 851 (1996).

    Article  ADS  Google Scholar 

  13. S. Höfner, M. U. Feuchtinger, and E. A. Dorfi, Astron. and Astrophys. 297, 815 (1995).

    ADS  Google Scholar 

  14. Y. J. W. Simis, V. Icke, and C. Dominik, Astron. and Astrophys. 371, 205 (2001).

    Article  ADS  Google Scholar 

  15. P. Woitke, Astron. and Astrophys. 452, 537 (2006).

    Article  ADS  Google Scholar 

  16. W. H. Sorrell, Monthly Notices Royal Astron. Soc. 334, 705 (2002).

    Article  ADS  Google Scholar 

  17. B. Freytag, F. Allard, H. G. Ludwig, et al., Mem. della Soc. Astron. Italiana 80, 670 (2009).

    ADS  Google Scholar 

  18. B. Freytag, F. Allard, D. Homeier, et al., ASP Conf. Ser., 450, 125 (2011).

    ADS  Google Scholar 

  19. B. B. Ochsendorf, S. Verdolini, N, L. J. Cox, et al., Astron. and Astrophys. 566, A75 (2014).

    Article  ADS  Google Scholar 

  20. B. B. Ochsendorf, N. L. J. Cox, S. Krijt, et al., Astron. and Astrophys. 563, A65 (2014).

    Article  ADS  Google Scholar 

  21. N. Murray, E. Quataert, and T. A. Thompson, Astrophys. J. 709, 191 (2010).

    Article  ADS  Google Scholar 

  22. A. Ferrara, Astrophys. J. 407, 157 (1993).

    Article  ADS  Google Scholar 

  23. S. Bianchi and A. Ferrara, Monthly Notices Royal Astron. Soc. 358, 379 (2005).

    Article  ADS  Google Scholar 

  24. G. B. Field, Astrophys. J. 165, 29 (1971).

    Article  ADS  Google Scholar 

  25. M. R. Krumholz and T. A. Thompson, Astrophys. J. 760, 155 (2012).

    Article  ADS  Google Scholar 

  26. L. D. Anderson, A. Zavagno, L. Deharveng, et al., Astron. and Astrophys. 542, A10 (2012).

    Article  ADS  Google Scholar 

  27. V. S. Shevchenko, O. V. Ezhkova, M. A. Ibrahimov, et al., Monthly Notices Royal Astron. Soc. 310, 210 (1999).

    Article  ADS  Google Scholar 

  28. B. T. Draine and E. E. Salpeter, Astrophys. J. 231, 77 (1979).

    Article  ADS  Google Scholar 

  29. O. Plekan, A. Cassidy, R. Balog, et al., Physical Chemistry Chemical Physics 13, 21035 (2011).

    Article  Google Scholar 

  30. B. T. Draine, Physics of the Interstellar and Intergalactic Medium (Princeton Univ. Press, Princeton, 2011).

  31. E. Krügel, The Physics of Interstellar Dust (IOP Publishing, Bristol and Philadelphia, 2003).

  32. H. C. van de Hulst, Light Scattering by Small Particles (Willey & Sons, New York; Chapman & Hall, London; 1957).

    Google Scholar 

  33. A. Laor and B. T. Draine, Astrophys. J. 402, 441 (1993).

    Article  ADS  Google Scholar 

  34. B. P. Briegleb and B. Light, Technical note NCAR/TN-472+STR (National Center for Atmospheric Research, Boulder, CO, 2007).

    Google Scholar 

  35. D. Mihalas and B. W. Mihalas, Foundation of Radiation Hydrodynamics (Oxford Univ. Press, New York, 1984).

    MATH  Google Scholar 

  36. L. Pan and P. Padoan, Astrophys. J. 692, 594 (2009).

    Article  ADS  Google Scholar 

  37. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 536, A25 (2011).

    Article  Google Scholar 

  38. B. T. Draine, in The Cold Universe, Ed. by A. W. Blain, F. Combes, B. T. Draine, et al. (Springer, 2004), Saas-Fee Advanced Course, Vol. 32, pp. 213–304.

    Article  Google Scholar 

  39. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley & Sons, New York, 1983).

    Google Scholar 

  40. B. Michel, Th. Henning, R. Stognienko, et al., Astrophys. J. 468, 834 (1996).

    Article  ADS  Google Scholar 

  41. http://wwwastroprincetonedu/~draine//dust/dustdielhtml

  42. J. Dorschner, B. Begemann, T. H. Henning, et al., Astron. and Astrophys. 300, 503 (1995).

    ADS  Google Scholar 

  43. R. Siegel and J. R. Howell, Thermal Radiation and Heat Transfer (McGrow Hill Book Company, New York, 1972).

    Google Scholar 

  44. J. H. Joseph and W. J.Wicombe. J. Atmospheric Sci. 33, 2452, (1976).

    Article  ADS  Google Scholar 

  45. W. J. Wicombe, Delta-Eddington Approximation for a Vertically Inhomogeneous Atmosphere (National Center for Atmospheric Research, 1977).

    Google Scholar 

  46. J.-L. Tassoul, Theory of Rotating Stars (Princeton Univ. Press, Princeton, 1978).

  47. G. Zasowski, S. R. Majewski, R. Indebetouw, et al., Astrophys. J. 707, 510 (2009).

    Article  ADS  Google Scholar 

  48. G. A. Goncharov, Astronomy Letters 39, 83 (2013).

    Article  ADS  Google Scholar 

  49. G. A. Goncharov, Astronomy Letters 39, 550 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Kovalenko.

Additional information

Original Russian Text © E.V. Zhukova, A.M. Zankovich, I.G. Kovalenko, K.M. Firsov, 2015, published in Astrofizicheskii Byulleten, 2015, Vol. 70, No. 4, pp. 502–523.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukova, E.V., Zankovich, A.M., Kovalenko, I.G. et al. Hydrodynamic model of a self-gravitating optically thick gas and dust cloud. Astrophys. Bull. 70, 474–493 (2015). https://doi.org/10.1134/S1990341315040100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341315040100

Keywords

Navigation