Skip to main content
Log in

Chemical abundances in the globular clusters NGC6229 and NGC6779

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

Long-slit medium-resolution spectra of the Galactic globular clusters (GCs) NGC6229 and NGC6779, obtained with the CARELEC spectrograph at the 1.93-m telescope of the Haute-Provence observatory, have been used to determine the age, helium abundance (Y), and metallicity [Fe/H] as well as the first estimate of the abundances of C, N, O, Mg, Ca, Ti, and Cr for these objects. We solved this task by comparing the observed spectra and the integrated synthetic spectra, calculated with the use of the stellar atmosphere models with the parameters preset for the stars from these clusters. The model mass estimates, T eff, and log g were derived by comparing the observed “color-magnitude” diagrams and the theoretical isochrones. The summing-up of the synthetic blanketed stellar spectra was conducted according to the Chabrier mass function. To test the accuracy of the results, we estimated the chemical abundances, [Fe/H], log t, and Y for the NGC5904 and NGC6254 clusters, which, according to the literature, are considered to be the closest analogues of the two GCs of our study. Using the medium-resolution spectra from the library of Schiavon et al., we obtained for these two clusters a satisfactory agreement with the reported estimates for all the parameters within the errors. We derived the following cluster parameters. NGC6229: [Fe/H] = −1.65 dex, t = 12.6 Gyr, Y = 0.26, [α/Fe] = 0.28 dex; NGC6779: [Fe/H] = −1.9 dex, t = 12.6 Gyr, Y = 0.23, [α/Fe] = 0.08 dex; NGC5904: [Fe/H] = −1.6 dex, t = 12.6 Gyr, Y = 0.30, [α/Fe] = 0.35 dex; NGC6254: [Fe/H] = −1.52 dex, t = 11.2 Gyr, Y = 0.30, [α/Fe] = 0.025 dex. The value [α/Fe] denotes the average of the Ca and Mg abundances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Harris, Astron. J. 112, 1487 (1996).

    Article  ADS  Google Scholar 

  2. T. V. Borkova and V. A. Marsakov, Astronomy Reports 44, 665 (2000).

    Article  ADS  Google Scholar 

  3. R. P. Schiavon, J. A. Rose, S. Courteau, and L. A. MacArthur, Astrophys. J. Suppl. 160, 163 (2005).

    Article  ADS  Google Scholar 

  4. J. Borissova, M. Catelan, N. Spassova, and A. V. Sweigart, Astron. J. 113, 692 (1997).

    Article  ADS  Google Scholar 

  5. J. Borissova, M. Catelan, F. R. Ferraro, et al., Astron. and Astrophys. 343, 813 (1999).

    ADS  Google Scholar 

  6. J. Borissova, M. Catelan, and T. Valchev, Monthly Notices Royal Astron. Soc. 324, 77 (2001).

    Article  ADS  Google Scholar 

  7. M. Catelan, J. Borissova, A. V. Sweigart, and N. Spassova, Astrophys. J. 494, 265 (1998).

    Article  ADS  Google Scholar 

  8. N. Sanna, E. Dalessandro, B. Lanzoni, et al., Monthly Notices Royal Astron. Soc. 422, 171 (2012).

    Google Scholar 

  9. D. Hatzidimitriou, V. Antoniou, I. Papadakis, et al., Monthly Notices Royal Astron. Soc. 348, 1157 (2004).

    Article  ADS  Google Scholar 

  10. A. Sarajedini, L. R. Bedin, B. Chaboyer, et al., Astron. J. 133, 1658 (2007).

    Article  ADS  Google Scholar 

  11. A. Dotter, A. Sarajedini, J. Anderson, et al., Astron. J. 708, 698 (2010).

    Article  Google Scholar 

  12. A. Dotter, B. Chaboyer, D. Jevremovic, et al., Astrophys. J. Suppl. 178, 89 (2008).

    Article  ADS  Google Scholar 

  13. K. M. Cudworth and R. B. Hanson, Astron. J. 105, 168 (1993).

    Article  ADS  Google Scholar 

  14. P. C. C. Freire, A. Wolszczan, M. van den Berg, and J. W. T. Hessels, Astrophys. J. 679, 1433 (2008).

    Article  ADS  Google Scholar 

  15. G. Coppola, M. Dall’Ora, V. Ripepi, et al., Monthly Notices Royal Astron. Soc. 416, 1056 (2011).

    Article  ADS  Google Scholar 

  16. A. C. Layden, A. Sarajedini, T. Hippel, and A. M. Cool, Astron. J. 632, 266 (2005).

    Article  Google Scholar 

  17. D. A. VandenBerg, K. Brogaard, R. Leaman, and L. Casagrande, Astron. J. 775, 134 (2013).

    Article  ADS  Google Scholar 

  18. G. Beccari, M. Pasquato, G. De Marchi, et al., Astrophys. J. 713, 194 (2010).

    Article  ADS  Google Scholar 

  19. E. Dalessandro, B. Lanzoni, G. Beccari, et al., Astrophys. J. 743, 11 (2011).

    Article  ADS  Google Scholar 

  20. D. A. VandenBerg, P. A. Bergbusch, and P. D. Dowler, Astrophys. J. Suppl. 162, 375 (2006).

    Article  ADS  Google Scholar 

  21. K. Banse, Ph. Crane, Ch. Ounnas, and D. Ponz, in Proc. DECUS Europe Symposium, Zurich, Switzerland, 1983, p. 87.

  22. M. E. Sharina, V. V. Shimansky, and E. Davoust, Astronomy Reports 57, 410 (2013).

    Article  ADS  Google Scholar 

  23. G. Bertelli, E. Nasi, L. Girardi, and P. Marigo, Astron. and Astrophys. 508, 335 (2009).

    ADS  Google Scholar 

  24. G. Piotto, I. R. King, S. G. Djorgovski, et al., Astron. and Astrophys. 391, 945 (2002).

    Article  ADS  Google Scholar 

  25. M. Salaris, S. Cassisi, and A. Weiss, Publ. Astron. Soc. Pacific 114, 375 (2002).

    Article  ADS  Google Scholar 

  26. I. Jr. Iben, Publ. Astron. Soc. Pacific 83, 697 (1971).

    Article  ADS  Google Scholar 

  27. I. Jr. Iben, Astrophys. J. Suppl. 76, 55 (1991).

    Article  ADS  Google Scholar 

  28. D. A. VandenBerg, M. Bolte, and P. B. Stetson, Astron. J. 100, 445 (1990).

    Article  ADS  Google Scholar 

  29. D. A. VandenBerg and P. R. Durrell, Astron. J. 99, 221 (1990).

    Article  ADS  Google Scholar 

  30. B. W. Carney and W. E. Harris, Star Clusters, Saas-Fee Advanced Course, No. 28 (Springer, 2001).

    Book  Google Scholar 

  31. J. C. Roediger, S. Courteau, G. Graves, and R. P. Schiavon, Astrophys. J. Suppl. 210, 10 (2014).

    Article  ADS  Google Scholar 

  32. N. L. D’Cruz, B. Dorman, R. T. Rood, and R. W. O’Connell, Astrophys. J. 466, 359 (1996).

    Article  ADS  Google Scholar 

  33. G. Chabrier, in The Initial Mass Function 50 Years Later, Ed. by E. Corbelli, F. Palla, and H. Zinneckeret, Astrophysics and Space Science Library, No. 327 (Springer, Dordrecht, 2005), p. 41.

  34. F. Castelli and R. L. Kurucz, IAU Symp., No. 210, A20.

  35. V. F. Suleimanov, Astronomy Letters 22, 92 (1996).

    ADS  Google Scholar 

  36. N. N. Shimanskaya, I. F. Bikmaev, and V. V. Shimansky, Astrophysical Bulletin 66, 332 (2011).

    Article  ADS  Google Scholar 

  37. R. Gratton, C. Sneden, and E. Carretta, Annual Rev. Astron. Astrophys. 42, 385 (2004).

    Article  ADS  Google Scholar 

  38. C. Gallart, M. Zoccali, and A. Aparicio, Annual Rev. Astron. Astrophys. 43, 387 (2005).

    Article  ADS  Google Scholar 

  39. B. J. Pritzl and K. A. Venn, Astron. J. 130, 2140 (2005).

    Article  ADS  Google Scholar 

  40. M. Samland, Astrophys. J. 496, 155 (1998).

    Article  ADS  Google Scholar 

  41. A. Alibes, J. Labay, and R. Canal, Astron. and Astrophys. 370, 1103 (2001).

    Article  ADS  Google Scholar 

  42. C. Kobayashi, H. Umeda, K. Nomoto, et al., Astron. J. 653, 1145 (2006).

    Article  ADS  Google Scholar 

  43. E. Komatsu, K. M. Smith, J. Dunkley, et al., Astrophys. J. Suppl. 192, 18 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Sharina.

Additional information

Original Russian Text © D.A. Khamidullina, M.E. Sharina, V.V. Shimansky, E. Davoust, 2014, published in Astrofizicheskii Byulleten, 2014, Vol. 69, No. 4, pp. 432–450.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamidullina, D.A., Sharina, M.E., Shimansky, V.V. et al. Chemical abundances in the globular clusters NGC6229 and NGC6779. Astrophys. Bull. 69, 409–426 (2014). https://doi.org/10.1134/S199034131404004X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199034131404004X

Keywords

Navigation