Skip to main content
Log in

Indices of Blood Free Radical Balance during Stimulation of Central Neuromediator Systems

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—Activation of brain neurotransmitter systems can change the intensity of free radical processes in peripheral tissues and organs. We studied the parameters of free radical balance in the blood of mature male rats under conditions of stimulation of the central neurotransmitter systems (noradrenergic, NAS; serotonergic, SRS; dopaminergic, DPS). The level of products reacting with thiobarbituric acid, catalase activity in plasma, and erythrocyte hemolysate were determined by conventional methods in animals after stimulation of NAS (maprotiline, 10 mg/kg), SRS (5-hydroxytryptophan, 50 mg/kg and fluoxetine, 3 mg/kg), and DPS (L-Dopa and amantadine, 20 mg/kg each). In half of the animals of each group, the indices were determined after a single injection of the β-adrenergic receptor blocker anaprilin (2 mg/kg). Quadruple administration of drugs activating NAS, SRS, and DPS was accompanied by a decrease in the concentration of free radical oxidation products and an increase in the catalase activity of erythrocytes and blood plasma. The administration of a β-adrenergic blocker during stimulation of neurotransmitter systems increases the concentration of free radical oxidation products to a lesser extent but potentiates the catalase activity of erythrocytes. After DPS stimulation, the general shifts in the free radical balance of blood are more pronounced; after stimulation of NAS, they are smaller; and only when SRS is activated, the direction of changes in some indices deviates from the general trends. Thus, administration of drugs activating NAS, SRS, and DPS is accompanied by adaptive changes in the free radical balance of the blood and predominantly weakens its response to the administration of a β-adrenergic receptor blocker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Katzung, B.G., Masters, S.B., and Trevor, A.J., Basic and Clinical Pharmacology, McGraw-Hill Companies Inc., 2012.

    Google Scholar 

  2. Belova, E.I., Osnovy neirofarmakologii (Bases of Neuropharmacology), Moscow: Aspekt Press, 2006.

  3. Libin, L.Ya, Dagaev, S.G., Kubarskaya, L.G., and Eshchenko, N.D., Vestnik SPbGU, 2012, no. 3, pp. 98–105.

  4. Colamartino, M., Padua, L., Meneghini, C., Leone, S., Cornetta, T., Testa, A., and Cozzi, R., DNA Cell Biol., 2012, vol. 31, no. 11, pp. 1572–1579.

    Article  CAS  Google Scholar 

  5. Spasojevic, N., Gavrilovic, L., Kovacevic, I., and Dronjak, S., Auton. Neurosci., 2009, vol. 145, nos. 1–2, pp. 104–107.

    Article  CAS  Google Scholar 

  6. Tronci, E., Lisci, C., Stancampiano, R., Fidalgo, C., Collu, M., Devoto, P., and Carta, M., Neurobiol. D., 2013, vol. 60, pp. 108–114.

  7. Dygai, A.M. and Skurikhin, E.G., Byull. Eksp. Biol. i Med., 2011, vol. 151, no. 2, pp. 132–139.

    Google Scholar 

  8. Zilov, V.G., Khadartsev, A.A., Morozov, V.N., and Khadartseva, K.A., Byull. Eksp. Biol. i Med., 2014, vol. 158, no. 12, pp. 665–668.

    Google Scholar 

  9. Kur’yanova, E.V., Tryasuchev, A.V., Stupin, V.O., and Teplyi, D.L., Byull. Eksp. Biol. i Med., 2017, vol. 163, no. 1, pp. 40–45.

    Google Scholar 

  10. Kur’yanova, E.V., Tryasuchev, A.V., Stupin, V.O., and Teplyi, D.L., Byull. Eksp. Biol. i Med., 2018, vol. 165, no. 5, pp. 536–540.

    Google Scholar 

  11. Sveshnikov, D.S., Kuchuk, A.V., Smirnov, V.M., and Cherepanova, G.V., Kazanskii Meditsinskii Zhurn., 2016, vol. 97, no. 1, pp. 89–95.

  12. Erin, A.N., Gulyaeva, N.V., and Nikushkin, E.V., Byull. Eksp. Biol. i Med., 1994, no. 10, pp. 343–348.

  13. Men’shchikova, E.B., Lankin, V.Z., Zenkov, N.K., Bondar’, I.A., Krugovykh, N.F., and Trufakin, V.A., Okislitel’nyi stress. Prooksidanty i antioksidanty (Oxidative Stress. Prooxidants and Antioxidants), Moscow: Slovo, 2006.

  14. Fu, Y., Han, J., Ishola, T., Scerbo, M., Adwanikar, H., Ramsey, C., and Neugebauer, V., Mol. Pain, 2008, vol. 26, no. 4, pp. 26–46.

    Google Scholar 

  15. Costa, V.M., Silva, R., Ferreira, R., Amado, F., Carvalho, F., Bastos, M.L., Carvalho, R.A., Carvalho, M., and Remiao, F., Toxicology, 2009, vol. 257, nos. 1–2, pp. 70–79.

    Article  CAS  Google Scholar 

  16. Pshennikova, M.G., in Aktual’nye problemy patofiziologii (Current Problems of Pathophysiology), Moroz, B.B, Ed., Moscow: Meditsina, 2001.

  17. Dimić, D. Milenković, D., Dimitrić Marković, J., and Marković, Z., Phys. Chem. Chem. Phys., 2017, vol. 19, no. 20, pp. 12970–12980.

    Article  Google Scholar 

  18. Lončar, A., Negrojević, L., Dimitrić-Marković, J., and Dimić, D., Comput. Biol. Chem., 2021, vol. 95, p. 107573.

    Article  Google Scholar 

  19. Caiaffo, V., Oliveira, B.D.R., de Sá, F.B., and Evêncio Neto J., Pharmacol. Res. Perspect., 2016, vol. 4, no. 3, p. e00231.

  20. Colamartino, M., Duranti, G., Ceci, R., Sabatini, S., Testa, A., and Cozzi, R., Toxicol. In Vitro, 2018, vol. 47, pp. 1–7.

    Article  CAS  Google Scholar 

  21. Napolitano, A., Bellini, G., Borroni, E., Zürcher, G., and Bonuccelli, U., Parkinsonism Relat. Disord., 2003, vol. 9, no. 3, pp. 145–150.

    Article  Google Scholar 

  22. Sergeeva, O.V., Akimova, I.A., Antonov, I.S., Luzina, L.S., Alipov, N.N., and Kuznetsova, T.E., Byull. Eksp. Biol. i Med., 2014, vol. 157, no. 3, pp. 268–271.

    Article  Google Scholar 

  23. Kamyshnikov, V.S., Spravochnik po kliniko-biokhimic-heskim issledovaniyam i laboratornoi diagnostike (Handbook on Clinical Biochemical Studies in Laboratory Diagnostics), Moscow: MEDpress-inform, 2004, pp. 549–550.

  24. Korolyuk, M.A., Ivanova, L.I., Maiorova, I.G., and Tokarev, V.E., Lab. Delo, 1988, no. 1, pp. 16–18.

  25. Kur’yanova, E.V., Tryasuchev, A.V., and Stupin, V.O., Estestvennye Nauki, 2015, vol. 51, no. 2, pp. 56–63.

    Google Scholar 

  26. Cornetta, T., Palma, S., Aprile, I., Padua, L., Tonali, P., Testa, A., and Cozzi, R., Cell Biol. Toxicol., 2009, vol. 25, p. 321.

    Article  CAS  Google Scholar 

Download references

Funding

There was no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kur’yanova.

Ethics declarations

Conflict of interests. The authors declare no conflict of interest.

Ethical approval. This study was performed with laboratory animals in compliance with ethical standards in accordance with the National Standard of the Russian Federation GOST R-53434-2009 “Principles of Good Laboratory Practice,” Order of the Ministry of Health of the Russian Federation dated April 1, 2016 No. 199n “On Approval of the Rules of Good Laboratory Practice” and the European Convention Directive 2010/63/EU of 22.09.2010.

Additional information

E. V. Kur’yanova is a corresponding author; address: ul. Shaumyana 1, Astrakhan, 414000 Russia; e-mail: fyzevk@rambler.ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kur’yanova, E.V., Tryasuchev, A.V. & Stupin, V.O. Indices of Blood Free Radical Balance during Stimulation of Central Neuromediator Systems. Neurochem. J. 16, 168–173 (2022). https://doi.org/10.1134/S1819712422020118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712422020118

Key words:

Navigation