Skip to main content
Log in

Intrathecal Infusion of Diosgenin during the Chronic Phase of Spinal Cord Injury Ameliorates Motor Function and Axonal Density

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

The chronic phase of spinal cord injury (SCI) is the most challenging to treat. The extension of disrupted axons is necessary for prominent motor function recovery. Our previous studies demonstrated that diosgenin had remarkable potential for axonal growth activity. This study investigated the effects of an intrathecal infusion of diosgenin in spinal cord-injured mice to evaluate motor function and axonal density during the chronic phase. Female ddY mice received an L1 spinal cord injury (SCI). Thirty-one days after the injury, the chronic intrathecal infusion was started. The infusion was sustained for 59 days, and motor function was evaluated using the Basso Mouse Scale, Toyama Mouse Score, and vertical cage scale through the dosing period and endpoint. 5-HT-positive raphespinal tracts were quantified in the lesion center, rostral and caudal positions 2 mm away from the center. The intrathecal infusion of diosgenin significantly improved hind limb motor function and density of the raphespinal tracts in the lesion center. The glial scar size did not differ between the vehicle-treated and diosgenin-treated groups. Cultured medulla oblongata neurons and spinal cord neurons on CSPG-coating extended axons by treatment with diosgenin. Diosgenin is a potential candidate as a therapeutic drug for chronic SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Tran, A.P., Warren, P.M., and Silver, J., Physiol. Rev., 2018, vol. 98(2), pp. 881–917.

    Article  CAS  Google Scholar 

  2. Xie, F., and Zheng, B., Exp. Neurol., 2008, vol. 209(2), pp. 302–312.

    Article  CAS  Google Scholar 

  3. Wang, D., Ichiyama, R.M., Zhao, R., Andrews, M.R., and Fawcett, J.W., J. Neurosci., 2011, vol. 31(25), pp. 9332–9344.

    Article  CAS  Google Scholar 

  4. Nori, S., Khazaei, M., Ahuja, C.S., Yokota, K., Ahlfors, J.E., Liu, Y., Wang, J., Shibata, S., Chio, J., Hettiaratchi, M.H., Führmann, T., Shoichet, M.S., and Fehlings, M.G., Stem Cell Reports, 2018, vol. 11(6), pp. 1433–1448.

    Article  CAS  Google Scholar 

  5. Tohda, C, Urano, T., Umezaki, M., Nemere, I., and Kuboyama, T., Sci. Rep., 2012, vol. 2, p. 535.

    Article  Google Scholar 

  6. Tohda, C., Lee, Y.A., Goto, Y., and Nemere, I., Sci. Rep., 2013, vol. 3, p. 3395.

    Article  Google Scholar 

  7. Yang, X., and Tohda, C., Sci.Rep., 2018, vol. 8, p. 11707.

    Article  Google Scholar 

  8. Kikuchi, T., Suyama, M., and Tohda, C., Sci. Rep., 2020, vol. 10, p. 19475.

    Article  CAS  Google Scholar 

  9. Casaca-Carreira, J., Temel, Y., Hescham, S.A., and Jahanshahi, A., Mol. Neurobiol., 2018, vol. 55, pp. 2780–2788.

    Article  CAS  Google Scholar 

  10. Basso, D.M., Fisher, L.C., Anderson, A.J., Jakeman, L.B., McTigue, D.M., and Popovich, P.G., J. Neurotrauma., 2006, vol. 23, pp. 635–659.

    Article  Google Scholar 

  11. Shigyo, M., Tanabe, N., Kuboyama, T., Choi, S.H., and Tohda, C., BMC Res. Notes, 2014, vol. 7, p. 332.

    Article  Google Scholar 

  12. Teshigawara, K., Kuboyama, T., Shigyo, M., Nagata, A., Sugimoto, K., Matsuya, Y., and Tohda, C., Br. J. Pharmacol., 2013, vol. 168, pp. 903–919.

    Article  CAS  Google Scholar 

  13. Ruschel, J., Hellal, F., Flynn, K.C., Dupraz, S., Elliott, D.A., Tedeschi, A., Bates, M., Sliwinski, C., Brook, G., Dobrindt, K., Peitz, M., Brüstle, O., Norenberg, M.D., Blesch, A., Weidner, N., Bunge, M.B., Bixby, J.L., and Bradke, F., Science, 2015, vol. 348, pp. 347–352.

    Article  CAS  Google Scholar 

  14. Shigyo, M., and Tohda, C., Sci. Rep., 2016, vol. 6, p. 28293.

    Article  CAS  Google Scholar 

  15. Tashiro, S., Nishimura, S., Iwai, H., Sugai, K., Zhang, L., Shinozaki, M., Iwanami, A., Toyama, Y., Liu, M., Okano, H., and Nakamura, M., Sci. Rep., 2016, vol. 6, p. 30898.

    Article  CAS  Google Scholar 

  16. Tanabe, N., Kuboyama, T., and Tohda, C., Neural. Regen. Res., 2019, vol.14(11), pp. 1961–1967.

    Article  Google Scholar 

  17. Bouchard, J.F., Horn, K.E., Stroh, T., and Kennedy, T.E., J. Neurochem., 2008, vol. 107, pp. 398–417.

    Article  CAS  Google Scholar 

  18. Aigner, L., Arber, S., Kapfhammer, J.P., Laux, T., Schneider, C., Botteri, F., Brenner, H.R., and Caroni, P., Cell, 1995, vol. 83, pp. 269–278.

    Article  CAS  Google Scholar 

  19. Verma, P., Chierzi, S., Codd, A.M., Campbell, D.S., Meyer, R.L., Holt, C.E., and Fawcett, J.W., J. Neurosci., 2005, vol. 25, pp. 331–342.

    Article  CAS  Google Scholar 

  20. Shi, S.H., Jan, L.Y., and Jan, Y.N., Cell, 2003, vol. 112, pp. 63–75.

    Article  CAS  Google Scholar 

  21. Atwal, J.K., Massie, B., Miller, F.D., and Kaplan, D.R., Neuron, 2000, vol. 27, pp. 265–277.

    Article  CAS  Google Scholar 

  22. Campbell, D.S., and Holt, C.E., Neuron, 2003, vol. 37, pp. 939–952.

    Article  CAS  Google Scholar 

  23. Data sheet of LIORESAL® INTRATHECAL. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/020075s032lbl.pdf.

Download references

ACKNOWLEDGMENTS

We would like to thank Editage (www.editage.jp) for English language editing.

Funding

This study was supported by a JSPS KAKENHI Grant (Number JP17H03558) and discretionary funds of the President of the University of Toyama in 2018 and 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aoi Nakano.

Ethics declarations

Conflict of interest. The authors declare that they have no competing interests.

Ethical approval. All experiments were performed following the Guidelines for the Care and Use of Laboratory Animals of the Sugitani Campus of the University of Toyama. All protocols were approved by the Committee for Animal Care and Use of the Sugitani Campus of the University of Toyama. The approval number for animal experiments was A2016INM-3 and A2019INM-3. All efforts were made to minimize the number of animals used.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, A., Yang, X., Kuboyama, T. et al. Intrathecal Infusion of Diosgenin during the Chronic Phase of Spinal Cord Injury Ameliorates Motor Function and Axonal Density. Neurochem. J. 15, 454–461 (2021). https://doi.org/10.1134/S1819712421040085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712421040085

Keywords:

Navigation