Skip to main content
Log in

Creation and Research of Cell Models of Hereditary Neurodegenerative Diseases Using Directed Genome Editing

  • REVIEW ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—Neurodegenerative diseases make up a large part of overall morbidity around the world. In particular, an increase in the average age of the population in most developed countries leads to a drastic increase in the proportion of patients with diagnoses such as Alzheimer’s disease and Parkinson’s disease. The existing methods of treatment are predominantly symptomatic and, in some cases can have a pronounced clinical effect, however, they cannot prevent the continuing death of neurons or reverse neurodegenerative process. To a large extent, these problems are associated with an insufficient understanding of the molecular genetic mechanisms that underlie pathogenesis, as well as with the lack of models that allow qualitative and quantitative data on the processes occurring in the neurons of patients to be obtained. The development of technologies of induced pluripotency, directed differentiation of pluripotent cells, and gene editing using programmed nucleases, makes it possible to significantly expand the arsenal of available research tools, especially in the search for new targets for drug and gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Tralau, T. and Luch, A., Trends Pharmacol. Sci., 2012, vol. 33, pp. 353–364.

    Article  CAS  Google Scholar 

  2. Niu, N. and Wang, L., Pharmacogenomics, 2015, vol. 16, pp. 273–285.

    Article  CAS  Google Scholar 

  3. Feany, M.B. and Bender, W.W., Nature, 2000, vol. 404, pp. 394–398.

    Article  CAS  Google Scholar 

  4. Liu, Z., Wang, X., Yu, Y., Li, X., Wang, T., Jiang, H., Ren, Q., Jiao, Y., Sawa, A., Moran, T., Ross, C.A., Montell, C., and Smith, W.W., Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 2693–2698.

    Article  CAS  Google Scholar 

  5. Li, T., Yang, D., Sushchky, S., Liu, Z., and Smith, W.W., Parkinsons D., vol. 2011, no. 2011, p. 942412.

  6. Yao, C., El Khoury, R., Wang, W., Byrd, T.A., Pehek, E.A., Thacker, C., Zhu, X., Smith, M.A., Wilson-Delfosse, A.L., and Chen, S.G., Neurobiol. D., vol. 40, no. 2010, pp. 73–81.

  7. McGurk, L., Berson, A., and Bonini, N.M., Genetics, 2015, vol. 201, pp. 377–402.

    Article  CAS  Google Scholar 

  8. Rosen, D.R., Martin-Morris, L., Luo, L.Q., and White, K., Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 2478–2482.

    Article  CAS  Google Scholar 

  9. Bungeroth, M., Appenzeller, S., Regulin, A., Volker, W., Lorenzen, I., Grotzinger, J., Pendziwiat, M., and Kuhlenbaumer, G., Neurobiol. Aging, 2014, vol. 35, pp. 1913–1919.

    Article  CAS  Google Scholar 

  10. Dansithong, W., Paul, S., Scoles, D.R., Pulst, S.M., and Huynh, D.P., PLoS One, 2015, vol. 10, p. e0136930.

  11. Eckermann, K., Kugler, S., and Bahr, M., Biochim. Biophys. Acta, 2015, vol. 1852, pp. 1658–1664.

    Article  CAS  Google Scholar 

  12. Ebert, A.D. and Svendsen, C.N., Nat. Rev. Drug Discov., 2010, vol. 9, pp. 367–372.

    Article  CAS  Google Scholar 

  13. Takahashi, K. and Yamanaka, S., Cell, 2006, vol. 126, pp. 663–676.

    Article  CAS  Google Scholar 

  14. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S., Cell, 2007, vol. 131, pp. 861–872.

    Article  CAS  Google Scholar 

  15. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I., and Thomson, J.A., Science, 2007, vol. 318, pp. 1917–1920.

    Article  CAS  Google Scholar 

  16. Lowry, W.E., Richter, L., Yachechko, R., Pyle, A.D., Tchieu, J., Sridharan, R., Clark, A.T., and Plath, K., Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 2883–2888.

    Article  CAS  Google Scholar 

  17. Dimos, J.T., Rodolfa, K.T., Niakan, K.K., Weisenthal, L.M., Mitsumoto, H., Chung, W., Croft, G.F., Saphier, G., Leibel, R., Goland, R., Wichterle, H., Henderson, C.E., and Eggan, K., Science, 2008, vol. 321, pp. 1218–1221.

    Article  CAS  Google Scholar 

  18. Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilic, J., Pekarik, V., Tiscornia, G., Edel, M., Boue, S., and Izpisua Belmonte, J.C., Nat. Biotechnol., 2008, vol. 26, pp. 1276–1284.

    Article  CAS  Google Scholar 

  19. Loh, Y.H., Hartung, O., Li, H., Guo, C.G., Sahalie, J.M., Manos, P.D., Urbach, A., Heffner, G.C., Grskovic, M., Vigneault, F., Lensch, M.W., Park, I.H., Agarwal, S., Church, G.M., Collins, J.J., Irion, S., and Daley, G.Q., Cell Stem Cell, 2010, vol. 7, pp. 15–19.

    Article  Google Scholar 

  20. Medvedev, S.P., Grigor’eva, E.V., Shevchenko, A.I., Malakhova, A.A., Dementyeva, E.V., Shilov, A.A., Pokushalov, E.A., Zaidman, A.M., Aleksandrova, M.A., Plotnikov, E.Y., Sukhikh, G.T., and Zakian, S.M., Stem Cells Dev., 2011, vol. 20, pp. 1099–1112.

    Article  CAS  Google Scholar 

  21. Elitt, M.S., Barbar, L., and Tesar, P.J., Hum. Mol. Genet., 2018, vol. 27, pp. R89–R98.

    Article  CAS  Google Scholar 

  22. Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G.W., Cook, E.G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., Isacson, O., and Jaenisch, R., Cell, 2009, vol. 136, pp. 964–977.

    Article  CAS  Google Scholar 

  23. Sanchez-Danes, A., Richaud-Patin, Y., Carballo-Carbajal, I., Jimenez-Delgado, S., Caig, C., Mora, S., Di Guglielmo, C., Ezquerra, M., Patel, B., Giralt, A., Canals, J.M., Memo, M., Alberch, J., Lopez-Barneo, J., Vila, M., Cuervo, A.M., Tolosa, E., Consiglio, A., and Raya, A., EMBO Mol. Med., 2012, vol. 4, pp. 380–395.

    Article  CAS  Google Scholar 

  24. Sareen, D., O’Rourke, J.G., Meera, P., Muhammad, A.K., Grant, S., Simpkinson, M., Bell, S., Carmona, S., Ornelas, L., Sahabian, A., Gendron, T., Petrucelli, L., Baughn, M., Ravits, J., Harms, M.B., Rigo, F., Bennett, C.F., Otis, T.S., Svendsen, C.N., and Baloh, R.H., Sci. Transl. Med., 2013, vol. 5, p. 208.

    Article  Google Scholar 

  25. Juopperi, T.A., Kim, W.R., Chiang, C.H., Yu, H., Margolis, R.L., Ross, C.A., Ming, G.L., and Song, H., Mol. Brain, 2012, vol. 5, p. 17.

    Article  CAS  Google Scholar 

  26. Malankhanova, T., Suldina, L., Grigor’eva, E., Medvedev, S., Minina, J., Morozova, K., Kiseleva, E., Zakian, S., and Malakhova, A., J. Pers. Med., 2020, vol. 10, р. 215.

  27. Soldner, F., Laganiere, J., Cheng, A.W., Hockemeyer, D., Gao, Q., Alagappan, R., Khurana, V., Golbe, L.I., Myers, R.H., Lindquist, S., Zhang, L., Guschin, D., Fong, L.K., Vu, B.J., Meng, X., Urnov, F.D., Rebar, E.J., Gregory, P.D., Zhang, H.S., and Jaenisch, R., Cell, 2011, vol. 146, pp. 318–331.

    Article  CAS  Google Scholar 

  28. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F., Science, 2013, vol. 339, pp. 819–823.

    Article  CAS  Google Scholar 

  29. Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M., Science, 2013, vol. 339, pp. 823–826.

    Article  CAS  Google Scholar 

  30. Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., Koonin, E.V., and Zhang, F., Cell, 2015, vol. 163, pp. 759–771.

    Article  CAS  Google Scholar 

  31. Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z., and Joung, J.K., Nature, 2016, vol. 529, pp. 490–495.

    Article  CAS  Google Scholar 

  32. Schmid-Burgk, J.L., Gao, L., Li, D., Gardner, Z., Strecker, J., Lash, B., and Zhang, F., Mol. Cell, 2020, vol. 78, pp. 794–800.

    Article  CAS  Google Scholar 

  33. Rehbach, K., Fernando, M.B., and Brennand, K.J., J. Neurosci., 2020, vol. 40, pp. 1176–1185.

    Article  CAS  Google Scholar 

  34. Schuster, S., Saravanakumar, S., Schols, L., and Hauser, S., Stem Cell Res., 2019, vol. 34, p. 101378.

    Article  CAS  Google Scholar 

  35. Malankhanova, T., Sorokin, M., Medvedev, S., Zakian, S., and Malakhova, A., Curr. Protoc. Hum. Genet., 2020, vol. 106, p. e100.

  36. Nagel, M., Mussig, S., Hoflinger, P., Schols, L., Hauser, S., and Schule, R., Stem Cell Res., 2020, vol. 49, p. 102059.

    Article  CAS  Google Scholar 

  37. Calatayud, C., Carola, G., Fernandez-Carasa, I., Valtorta, M., Jimenez-Delgado, S., Diaz, M., Soriano-Fradera, J., Cappelletti, G., Garcia-Sancho, J., Raya, A., and Consiglio, A., Sci. Rep., vol. 9, p. 6811.

  38. Ustyantseva, E.I., Medvedev, S.P., Vetchinova, A.S., Minina, J.M., Illarioshkin, S.N., and Zakian, S.M., Biochemistry (Mosc), 2019, vol. 84, pp. 299–309.

    Article  CAS  Google Scholar 

  39. Sadelain, M., Papapetrou, E.P., and Bushman, F.D., Nat. Rev. Cancer, 2011, vol. 12, pp. 51–58.

    Article  Google Scholar 

  40. Kim, H., Ju, J., Lee, H.N., Chun, H., and Seong, J., Sensors (Basel), 2021, vol. 21, p. 795.

  41. Bi, X., Beck, C., and Gong, Y., Biosensors (Basel), 2021, vol. 11, p. 116.

  42. Schulz, J.B., Lindenau, J., Seyfried, J., and Dichgans, J., Eur. J. Biochem., 2000, vol. 267, pp. 4904–4911.

    Article  CAS  Google Scholar 

  43. Samali, A., Fitzgerald, U., Deegan, S., and Gupta, S., Int. J. Cell Biol., 2010, vol. 2010, p. 830307.

    PubMed  PubMed Central  Google Scholar 

  44. Lee, J.H., Han, J.H., Kim, H., Park, S.M., Joe, E.H., and Jou, I., Acta Neuropathol. Commun., 2019, vol. 7, p. 68.

    Article  Google Scholar 

  45. Colla, E., Front. Neurosci., 2019, vol. 13, p. 560.

    Article  Google Scholar 

  46. Dafinca, R., Barbagallo, P., and Talbot, K., Front. Cell. Neurosci., 2021, vol. 15, p. 653688.

    Article  CAS  Google Scholar 

  47. Bella, E.D., Bersano, E., Antonini, G., Borghero, G., Capasso, M., Caponnetto, C., Chio, A., Corbo, M., Filosto, M., Giannini, F., Spataro, R., Lunetta, C., Mandrioli, J., Messina, S., Monsurro, M.R., Mora, G., Riva, N., Rizzi, R., Siciliano, G., Silani, V., Simone, I., Soraru, G., Tugnoli, V., Verriello, L., Volanti, P., Furlan, R., Nolan, J.M., Abgueguen, E., Tramacere, I., and Lauria, G., Brain, 2021, vol. 144, pp. 2635–2647. https://doi.org/10.1093/brain/awab167

  48. Shacham, T., Patel, C., and Lederkremer, G.Z., Biomolecules, 2021, vol. 11, p. 354. https://doi.org/10.3390/biom11030354

  49. Ghemrawi, R. and Khair, M., Int. J. Mol. Sci., 2020, vol. 21, p. 6127.

  50. Iwawaki, T., Akai, R., Kohno, K., and Miura, M., Nat. Med., 2004, vol. 10, pp. 98–102.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-29-04011 MK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Medvedev.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, S.P., Malankhanova, T.B., Valetdinova, K.R. et al. Creation and Research of Cell Models of Hereditary Neurodegenerative Diseases Using Directed Genome Editing. Neurochem. J. 15, 353–358 (2021). https://doi.org/10.1134/S1819712421040073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712421040073

Keywords:

Navigation