Skip to main content
Log in

Problems with Technologies of Genomic Editing and Transgenesis

  • REVIEW ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—This study briefly summarizes the problems that arise when working with transgenesis systems based on recombinases and CRISPR/Cas9. A number of recent results are highlighted regarding the possible effects induced by tamoxifen and doxycycline, agents that are widely used to regulate gene expression in transgenic animals with inducible gene expression. According to these data, there is always the possibility of ectopic tamoxifen-independent expression of the transgene, and currently it is not always possible to predict where it will be observed and how this may affect the final picture of gene expression. A similar problem is present with the use of doxycycline-dependent systems, where the “nonspecific” effects of doxycycline are simply ignored. This work raises the problem of the need to conduct control experiments, taking into account the development of possible side effects associated with both the use of gene expression modulators and the systems that alter the genome, as well as the development of alternative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Frt sites are inserted when Flp recombinase is used.

REFERENCES

  1. Koller, B.H., Marrack, P., Kappler, J.W., and Smithies, O., J. Immunol. Science, 2010, vol. 184, no. 9, pp. 1227–1230.

    Google Scholar 

  2. Zijlstra, M., Bix, M., Simister, N.E., Loring, J.M., Raulet, D.H., and Jaenisch, R., Nature, 1990, vol. 344, no. 6268, pp. 742–746.

    Article  CAS  Google Scholar 

  3. Horn, P.J. and Peterson, C.L., Science, 2002, vol. 297, no. 5588, pp. 1824–1827.

    Article  CAS  Google Scholar 

  4. Song, A.J. and Palmiter, R.D., Trends Genet., 2018, vol. 34, no. 5, pp. 333–340.

    Article  CAS  Google Scholar 

  5. Declercq, J., Brouwers, B., Pruniau, V.P.E.G., Stijnen, P., De Faudeur, G., Tuand, K., Meulemans, S., Serneels, L., Schraenen, A., Schuit, F., and Creemers, J.W.M., PLoS One, 2015, vol. 10, no. 8.

  6. Giusti, S.A., Vercelli, C.A., Vogl, A.M., Kolarz, A.W., Pino, N.S., Deussing, J.M., and Refojo, D., J. Psychiatr. Res, 2014, vol. 55, no. 1, pp. 87–95.

    Article  Google Scholar 

  7. Harno, E., Cottrell, E.C., and White, A., Cell Metabolism, 2013, vol. 18, no. 1, pp. 21–28.

    Article  CAS  Google Scholar 

  8. Chen, E., Lallai, V., Sherafat, Y., Grimes, N.P., Pushkin, A.N., Fowler, J.P., and Fowler, C.D., J. Neurosci., 2018, vol. 38, no. 9, pp. 2177–2188.

    Article  CAS  Google Scholar 

  9. Becher, B., Waisman, A., and Lu, L.F., Immunity, 2018, vol. 48, no. 5, pp. 835–836.

    Article  CAS  Google Scholar 

  10. Vogt, M.A., Chourbaji, S., Brandwein, C., Dormann, C., Sprengel, R., and Gass, P., Exp. Neurol., 2008, vol. 211, no. 1, pp. 25–33.

    Article  CAS  Google Scholar 

  11. Rotheneichner, P., Romanelli, P., Bieler, L., Pagitsch, S., Zaunmair, P., Kreutzer, C., Konig, R., Marschallinger, J., Aigner, L., and Couillard-Despres, S., Front. Neurosci, 2017, vol. 11.

  12. Wust, R.C.I., Houtkooper, R.H., and Auwerx, J., J. Cell Biol., 2020, vol. 219, no. 7.

  13. Valny, M., Honsa, P., Kirdajova, D., Kamenik, Z., and Anderova, M., Front. Cell. Neurosci, 2016, vol. 10.

  14. Li, X., Du, Z.J., Chen, M.Q., Chen, J.J., Liang, Z.M., Ding, X.T., Zhou, M., Li, S.J., Li, X.W., Yang, J.M., and Gao, T.M., Genes, Brain Behav, 2020, vol. 19, no. 4.

  15. Lee, C.M., Zhou, L., Liu, J., Shi, J., Geng, Y., Liu, M., Wang, J., Su, X., Barad, N., Wang, J., Sun, Y.E., and Lin, Q., Proc. Natl. Acad. Sci. U.S.A., 2020, vol. 117, no. 32, pp. 19578–19589.

    Article  CAS  Google Scholar 

  16. Tasic, B., Yao, Z., Graybuck, L.T., Smith, K.A., Nguyen, T.N., Bertagnolli, D., Goldy, J., Garren, E., Economo, M.N., Viswanathan, S., Penn, O., Bakken, T., Menon, V., Miller, J., Fong, O., Hirokawa, K.E., Lathia, K., Rimorin, C., Tieu, M., Larsen, R., Casper, T., Barkan, E., Kroll, M., Parry, S., Shapovalova, N.V., Hirschstein, D., Pendergraft, J., Sullivan, H.A., Kim, T.K., Szafer, A., Dee, N., Groblewski, P., Wickersham, I., Cetin, A., Harris, J.A., Levi, B.P., Sunkin, S.M., Madisen, L., Daigle, T.L., Looger, L., Bernard, A., Phillips, J., Lein, E., Hawrylycz, M., Svoboda, K., Jones, A.R., Koch, C., and Zeng, H., Nature, 2018, vol. 563, no. 7729, pp. 72–78.

    Article  CAS  Google Scholar 

  17. Zeisel, A., Hochgerner, H., Lonnerberg, P., Johnsson, A., Memic, F., van der Zwan, J., Haring, M., Braun, E., Borm, L.E., La Manno, G., Codeluppi, S., Furlan, A., Lee, K., Skene, N., Harris, K.D., Hjerling-Leffler, J., Arenas, E., Ernfors, P., Marklund, U., and Linnarsson, S., Cell, 2018, vol. 174, no. 4, pp. 999–1014.

    Article  CAS  Google Scholar 

  18. Chesnoy-Marchais, D., Endocrinology, 2005, vol. 146, no. 10, pp. 4302–4311.

    Article  CAS  Google Scholar 

  19. Gonzalez-Burgos, I., Rivera-Cervantes, M.C., Velazquez-Zamora, D.A., Feria-Velasco, A., and Garcia-Segura, L.M., Neural Plast, 2012, vol. 2012.

  20. Denk, F., Ramer, L.M., Erskine, E.L.K.S., Nassar, M.A., Bogdanov, Y., Signore, M., Wood, J.N., McMahon, S.B., and Ramer, M.S., Acta Neuropathol. Commun, 2015, vol. 3, p. 74.

    Article  Google Scholar 

  21. Alvarez-Aznar, A., Martinez-Corral, I., Daubel, N., Betsholtz, C., Makinen, T., and Gaengel, K., Transgenic Res., 2020, vol. 29, no. 1, pp. 53–68.

    Article  CAS  Google Scholar 

  22. Van Hove, H., Antunes, A.R.P., De Vlaminck, K., Scheyltjens, I., Van Ginderachter, J.A., and Movahedi, K., European J. Immunology, 2020, vol. 50, no. 3, pp. 459–463.

    Article  CAS  Google Scholar 

  23. Chappell-Maor, L., Kolesnikov, M., Kim, J.S., Shemer, A., Haimon, Z., Grozovski, J., Boura-Halfon, S., Masuda, T., Prinz, M., and Jung, S., Eur. J. Immunol., 2020, vol. 50, no. 3, pp. 353–362.

  24. Maes, M.E., Colombo, G., Schulz, R., and Siegert, S., Neurosci. Let., 2019, vol. 707, p. 134310.

    Article  CAS  Google Scholar 

  25. Chukwudi, C.U. and Good, L., J. Antibiot. (Tokyo), 2019, vol. 72, no. 4, pp. 225–236.

    Article  CAS  Google Scholar 

  26. Kallunki, T., Barisic, M., Jaattela, M., and Liu, B., Cells, 2019, vol. 8, no. 8, p. 796.

    Article  CAS  Google Scholar 

  27. Mehravar, M., Shirazi, A., Nazari, M., and Banan, M., Developmental Biology, 2019, vol. 445, no. 2, pp. 156–162.

    Article  CAS  Google Scholar 

  28. Yan, S., Tu, Z., Li, S., and Li, X.J., Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, vol. 81, pp. 488–492.

    Article  CAS  Google Scholar 

  29. Wang, H., Lu, H., Lei, Y.S., Gong, C.Y., Chen, Z., Luan, Y.Q., Li, Q., Jian, Y.Z., Wang, H.Z., Wu, F.L., Tao, C.,L., Shen, H., Bo, H.B., Shao, H.W., and Zhang, W.F., Mol. Ther. Methods Clin. Dev, 2020, vol. 18, pp. 390–401.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The author expresses his gratitude to M.M. Mikhailova for her critical remarks during preparation of the work and Yu.S. Spivak for her help with designing the figures.

Funding

The work was completed under the state assignment of Ministry of Education and Science of the Russian Federation for 2021–2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Bolshakov.

Ethics declarations

Conflict of interests. The author declares no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolshakov, A.P. Problems with Technologies of Genomic Editing and Transgenesis. Neurochem. J. 15, 333–338 (2021). https://doi.org/10.1134/S1819712421040036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712421040036

Keywords:

Navigation