Skip to main content
Log in

Chronic Standard Scheduled-Diet Improves Memory Performance and Is Associated with Positive Correlation between Plasma Ghrelin and Hippocampal Dopamine Level in Rats

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Dietary content/habit is known to play a prominent role in memory function, in part via a direct effect of ghrelin on the hippocampus. Given the role of ghrelin in regulation of central dopamine release, ghrelin impact on learning and memory may also be indirect via dopamine. Here, we examined effect of scheduled-diets and different amounts of calorie intakes on hippocampal dopamine content and memory performance as well as correlation between plasma ghrelin and hippocampal dopamine. Forty male Wistar rats (180–200 g) were divided into four groups (n = 10): freely fed (control) and three scheduled-fed groups with different caloric intakes; high fat, standard and restricted diets, and were maintained on each feeding program for 16 days. At day 16, memory performance (using passive avoidance test) and circulating ghrelin were evaluated. The hippocampal homogenates were analyzed using HPLC with electrochemical detection to quantitate dopamine levels. The hippocampal dopamine was increased in scheduled-feeding rats compared to controls, with the highest level in the scheduled-restricted group (p < 0.01). There was a significant positive relationship between circulating ghrelin and hippocampal dopamine in anticipation of food in all scheduled-feeding rats compared to controls (p < 0.05 and p < 0.01). Memory improvement in standard scheduled-diet was significantly greater than non-scheduled-diet (control)> scheduled-restricted diet> scheduled-high fat diet (p < 0.001). These data indicate a differential effect of increased plasma ghrelin and hippocampal dopamine on memory performance in scheduled-diet groups, with enhanced memory in standard scheduled-diet and impaired memory in scheduled-high fat and restricted diets, suggesting nutritional balance and incentive signals of diet related to dopamine may be critical determinants of memory performance in scheduled-diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kanoski, S.E., and Davidson, T.L., Physiol. Behav., 2011, vol. 103, pp. 59–68.

    Article  CAS  Google Scholar 

  2. Spencer, S.J., Korosi, A., Layé, S., Shukitt-Hale B., and Barrientos R.M., npj Sci. Food., 2017, vol. 1, p. 7.

  3. Miller, A.A., and Spencer, S.J., Brain Behav. Immun., 2014, vol. 42, pp.10–21.

    Article  CAS  Google Scholar 

  4. Thaler, J.P., Yi, C.X., Schur, E.A., Guyenet, S.J., Hwang, B.H., Dietrich, M.O., Zhao, X., Sarruf, D.A., Izgur, V., Maravilla, K.R., Nguyen, H.T., Fischer, J.D., Matsen, M.E., Wisse, B.E., Morton, G.J., Horvath, T.L., Baskin, D.G., Tschöp, M.H., and Schwartz, M.W., The Journal of Clinical Investigation., 2012, vol. 122, pp.153–162.

    Article  CAS  Google Scholar 

  5. Beilharz, J.E., Maniam, J., and Morris, M.J., Behav. Brain Res., 2016, vol. 306, pp. 1–7.

    Article  CAS  Google Scholar 

  6. Hopperton, K.E., Trépanier, M.O., Giuliano, V., and Bazinet, R.P., J. Neuroinflammation., 2016, vol. 13, p. 257.

    Article  Google Scholar 

  7. Lamport, D.J., Saunders, C., Butler, L.T., and Spencer, J.P., Nutr. Rev., 2014, vol. 72, pp. 774–789.

    Article  Google Scholar 

  8. Ahima, R.S., and Antwi, D.A., Endocrinol. Metab. Clin. North Am., 2008, vol. 37, pp. 811–823.

    Article  CAS  Google Scholar 

  9. Hsu, T.M., Suarez, A.N., and Kanoski, S.E. Physiol. Behav., 2016, vol. 162, pp. 10–17.

    Article  CAS  Google Scholar 

  10. Drazen, D.L, Vahl, T.P., D’Alessio, D.A., Seeley, R.J., and Woods, S.C., Endocrinology, 2006, vol. 147, pp. 23–30.

    Article  CAS  Google Scholar 

  11. Jiang, H., Betancourt, L., and Smith, R.G., Mol. Endocrinol., 2006, vol. 20, pp. 1772–1785.

    Article  CAS  Google Scholar 

  12. Palmiter, R.D., Trends Neurosci., 2007, vol. 30, pp. 375–381.

    Article  CAS  Google Scholar 

  13. Müller, T.D., Nogueiras. R., Andermann, M.L., Andrews, Z.B., Anker, S.D., Argente, J., Batterham, R.L., Benoit, S.C., Bowers, C.Y., Broglio, F., Casanueva, F.F., D’Alessio, D., Depoortere, I., Geliebter, A., Ghigo, E., Cole, P.A., Cowley, M., Cummings, D.E., Dagher, A., Diano, S., Dickson, S.L., Diéguez, C., Granata, R., Grill, H.J., Grove, K., Habegger, K.M., Heppner, K., Heiman, M.L., Holsen, L., Holst, B., Inui, A., Jansson, J.O., Kirchner, H., Korbonits, M., Laferrère, B., LeRoux, C.W., Lopez, M., Morin, S., Nakazato, M., Nass, R., Perez-Tilve, D., Pfluger, P.T., Schwartz, T.W., Seeley, R.J., Sleeman, M., Sun, Y., Sussel, L., Tong, J., Thorner, M.O., van der Lely, A.J., van der Ploeg, L.H., Zigman, J.M., Kojima, M., Kangawa, K., Smith, R.G., Horvath, T., and Tschöp, M.H., Mol. Metab., 2015, vol. 4, pp. 437–460.

    Article  Google Scholar 

  14. Chowdhury, R., Guitart-Masip, M., Bunzeck, N., Dolan, R.J., and Düzel, E., J Neurosci., 2012, vol. 32, pp. 14193–14204.

    Article  Google Scholar 

  15. O’Carroll, C. M., Martin, S. J., Sandin, J., Frenguelli, B., and Morris, R. G., Learning & Memory (Cold Spring Harbor, N.Y.), vol. 13, pp. 760–769.

  16. Duszkiewicz, A.J., McNamara, C.G., Takeuchi, T., and Genzel, L., Trends Neurosci., 2019, vol. 42, pp. 102–114

    Article  CAS  Google Scholar 

  17. Bäckman, L., Ginovart, N., Dixon, R.A., Wahlin, T.B., Wahlin, A., Halldin, C., and Farde, L., Am. J. Psychiatry, 2000, vol.157, pp. 635–637.

    Article  Google Scholar 

  18. Abdulrahman, H., Fletcher, P.C., Bullmore, E., and Morcom, A.M., Neuroimage., 2017, vol. 153, pp. 211–220.

    Article  CAS  Google Scholar 

  19. Suckow, M.A., Weisbroth, S.H., and Franklin, C.L., The Laboratory Rat, 2nd ed., Elsevier, 2006.

    Google Scholar 

  20. Hornsby, A.K., Redhead, Y.T., Rees, D.J., Ratcliff, M.S., Reichenbach, A., Wells, T., Francis, L., Amstalden, K., Andrews, Z.B., and Davies, J.S., Psychoneuroendocrinology, 2016, vol. 63, pp. 198–207.

    Article  CAS  Google Scholar 

  21. Quillfeldt, J.A., Behavioral Methods to Study Learning and Memory in Rats, In: Andersen, M., Tufik, S., (eds) Rodent Model as Tools in Ethical Biomedical Research, Springer, Cham, 2016.

    Google Scholar 

  22. Chatterjee, D. and Gerlai, R., Behav. Brain Res., 2009, vol. 200, pp. 208–213.

    Article  CAS  Google Scholar 

  23. Halabian, A., Mehranfard, N., Radahmadi, M., and Ghasemi, M., Physiol. Pharmacol., 2019, vol. 23, pp. 189–196.

    Google Scholar 

  24. Volkow, N.D., Wang, G.J., and Baler, R.D., Trends Cogn. Sci., 2011, vol. 15, pp. 37–46.

    Article  CAS  Google Scholar 

  25. Matta, R., Tiessen, A.N., and Choleris, E., Neuropsychopharmacology, 2017, vol. 42, pp. 2344–2353.

    Article  CAS  Google Scholar 

  26. Fanselow, M.S., and Dong, H.W., Neuron, 2010, vol. 65, pp. 7–19

    Article  CAS  Google Scholar 

  27. Tschop, M., Smiley, D.L., and Heiman, M.L., Nature, 2000, vol. 407, pp. 908–913.

    Article  CAS  Google Scholar 

  28. Keen-Rhinehart, E., and Bartness, T.J., Am. J. Physiol.—Regul. Integr. Comp. Physiol., 2005, vol. 288, pp. R716–R722.

    Article  CAS  Google Scholar 

  29. Cummings, D.E., Frayo, R.S., Marmonier, C., Aubert, R., and Chapelot, D., Am. J. Physiol. Endocrinol. Metab., 2004, vol. 287, pp. E297–E304.

    Article  CAS  Google Scholar 

  30. Schmid, D.A., Held, K., Ising, M., Uhr, M., Weikel, J.C., and Steiger, A., Neuropsychopharmacology, 2005, vol. 30, pp.1187–1192.

    Article  CAS  Google Scholar 

  31. Small, D.M., Jones-Gotman, M., and Dagher, A., Neuroimage, 2003, vol. 19, pp. 1709–1715.

    Article  Google Scholar 

  32. Norgren, R., Hajnal, A., and Mungarndee, S.S., Physiol. Behav., 2006, vol. 89, pp. 531–535.

    Article  CAS  Google Scholar 

  33. Ghersi, M.S., Gabach, L.A., Buteler, F., Vilcaes, A.A., Schiöth, H.B., Perez, M.F., and de Barioglio, S.R., Psychopharmacology (Berl.), 2015, vol. 232, pp. 1843–1857.

    Article  CAS  Google Scholar 

  34. Diano, S., Farr, S.A., Benoit, S.C., McNay, E.C., da Silva, I., Horvath, B., Gaskin, F.S., Nonaka, N., Jaeger, L.B., Banks, W.A., Morley, J.E., Pinto, S., Sherwin, R.S., Xu, L., Yamada, K.A., Sleeman, M.W., Tschöp, M.H., and Horvath, T.L., Nat. Neurosci., 2006, vol. 9, pp. 381–388.

    Article  CAS  Google Scholar 

  35. Seminara, R.S., Jeet, C., Biswas, S., Kanwal, B., Iftikhar, W., Sakibuzzaman, M., and Rutkofsky, I.H., Cureus., 2018, vol. 10, p. e3285.

    PubMed  PubMed Central  Google Scholar 

  36. Morrison, C.D., Pistell, P.J., Ingram, D.K., Johnson, W.D., Liu, Y., Fernandez-Kim, S.O., White, C.L., Purpera, M.N., Uranga, R.M., Bruce-Keller, A.J., and Keller, J.N., Journal of Neurochemistry, 2010, vol. 114, pp. 1581–1589.

    Article  CAS  Google Scholar 

  37. Yuan, F., Ma, J., Xiang, X., Lan, H., Xu, Y., Zhao, J., Li, Y., and Zhang, W., BioMed Research International, 2018, vol. 2018, p. 4924325.

    PubMed  PubMed Central  Google Scholar 

  38. Carlini, V.P., Martini, A.C., Schiöth, H.B., Ruiz, R.D., Fiol de Cuneo, M., and de Barioglio, S.R., Neuroscience, 2008, vol.153, pp. 929–934.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Dr. Marjan Khademizadeh and Mrs. Safora Alizadeh for their excellent technical assistance for HPLC assay.

Funding

This work was supported by the Isfahan University of Medical Sciences, Isfahan, Iran (Grant no. 198024, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maedeh Ghasemi.

Ethics declarations

Conflict of interest. The authors declared no conflict of interest.

Ethical approval. All experiments were conducted under protocols approved by the Ethical Committee of Isfahan University of Medical Sciences (IR.MUI.RESEARCH. REC.1398.226, Isfahan, Iran) in accordance with the Guide for Care and Use of Laboratory Animals (National Institute of Health Publication no. 80-23, revised 1996).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alireza Halabian, Mehranfard, N., Ghasemi, M. et al. Chronic Standard Scheduled-Diet Improves Memory Performance and Is Associated with Positive Correlation between Plasma Ghrelin and Hippocampal Dopamine Level in Rats. Neurochem. J. 15, 148–153 (2021). https://doi.org/10.1134/S1819712421020069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712421020069

Keywords:

Navigation