Skip to main content
Log in

The Effects of Short-Term Stress and Long-Term Fluoxetine Treatment on the Expression of Apoptotic Proteins in the Brain

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

The effects of 2- or 8-week-long daily treatment with fluoxetine at a dose of 7.26–7.70 mg/kg given with drinking water and short-term forced-swim stress on the levels of mRNAs of anti- and pro-apoptotic proteins, that is, Bcl-xL and Bax, respectively, were studied in the brains of adult male rats using the RT-PCR method. Antiapoptotic effects of stress on the expression of these proteins were observed in the hippocampus of rats that were not treated with fluoxetine and in the midbrain after 2 weeks of the antidepressant treatment. Pro-apoptotic effects of stress were revealed in the frontal cortex of animals that were not treated with fluoxetine and after 2 weeks of fluoxetine treatment. An 8-week-long fluoxetine treatment resulted in an increase in the basal Bax expression in the hippocampus and in anti-apoptotic effects in the neocortex, which were more clearly seen after stress. The observed interaction of the effects of stress and fluoxetine on the expression of proteins of neuronal survival and plasticity may provide anti- or proapoptotic action of the antidepressant on the cells of the emotiogenic structures of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Djordjevic, A., Djordjevic, J., Elakovic, I., Adzic, M., Matic, G., and Radojcic, M.B., Progr. Neuropsychopharmacol. Biol. Psychiatry, 2012, vol. 36, pp. 92–100.

    Article  CAS  Google Scholar 

  2. Manji, H.K., Drevets, W.C., and Charney, D.S., Nat. Med., 2001, vol. 7, pp. 541–547.

    Article  PubMed  CAS  Google Scholar 

  3. Reus, G.Z., Abelaria, H.M., Agostinho, F.R., Ribeiro, K.F., Vitto, M.F., Luciano, T.F., Souza, C.T., and Quevedo, J., J. Psychiatr. Res., 2012, vol. 46, pp. 1029–1035.

    Article  PubMed  Google Scholar 

  4. Shishkina, G.T., Kalinina, T.S., and Dygalo, N.N., Neuroscience, 2007, vol. 150, pp. 404–412.

    Article  PubMed  CAS  Google Scholar 

  5. Shishkina, G.T., Kalinina, T.S., Berezova, I.V., Bulygina, V.V., and Dygalo, N.N., Behav. Brain Res., 2010, vol. 213, pp. 218–224.

    Article  PubMed  CAS  Google Scholar 

  6. Shindler, K.S., Latham, C.B., and Roth, K.A., J. Neurosci., 1997, vol. 17, pp. 3112–3119.

    Article  PubMed  CAS  Google Scholar 

  7. Tamatani, M., Che, Y.H., Matsuzaki, H., Ogawa, S., Okado, H., Miyake, S., Mizuno, T., and Tohyama, M., J. Biol. Chem., 1999, vol. 274, pp. 8531–8538.

    Article  PubMed  CAS  Google Scholar 

  8. Nudel, U., Zacut, M., Neuman, S., Levy, Z., and Yaffe, D., Nucleic Acid Res., 1983, vol. 11, pp. 1759–1771.

    Article  PubMed  CAS  Google Scholar 

  9. Jonas, E.A., Porter, G.A., and Alavian, K.N., Front. Physiol., 2014, vol. 5: 355.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jonas, E., Mol. Interv., 2006, vol. 6, pp. 208–222.

    Article  PubMed  CAS  Google Scholar 

  11. Li, H., Alavian, K.N., Lazrove, E., Mehta, N., Jones, A., Zhang, P., Licznerski, P., Graham, M., Uo, T., Guo, J., Rahner, C., Duman, R.S., Morrison, R.S., and Jonas, E.A., Nat. Cell. Biol., 2013, vol. 15, pp. 773–785.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Du, J., Wang, Y., Hunter, R., Wei, Y., Blumenthal, R., Falke, C., Khairova, R., Zhou, R., Yuan, P., Machado-Vieira, R., McEwen, B.S., and Manji, H.K., Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 3543–3548.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang, X., Xie, Y., Zhang, T., Bo, S., Bai, X., Liu, H., Li, T., Liu, S., Zhou, Y., Cong, X., Wang, Z., and Liu, D., Brain Res. Bull., 2016, vol. 125, pp. 134–143.

    Article  PubMed  CAS  Google Scholar 

  14. Zhai, F.G., Zhang, X.H., and Wang, H.L., Clin. Exp. Pharmacol. Physiol., 2009, vol. 36, pp. 850–856.

    Article  PubMed  CAS  Google Scholar 

  15. Jakubovski, E., Varigonda, A.L., Freemantle, N., Taylor, M.J., and Bloch, M.H., Am. J. Psychiatry, 2016, vol. 173, pp. 174–183.

    Article  PubMed  Google Scholar 

  16. de Kloet, E.R., J. Neuroendocrinol., 2008, vol. 20, pp. 885–892.

    Article  PubMed  CAS  Google Scholar 

  17. Feder, A., Nestler, E.J., and Charney, D.S., Nat. Rev. Neurosci., 2009, vol. 10, pp. 446–457.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. McEwen, B.S. Eur. J. Pharmacol., 2008, vol. 583, pp. 174–185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Puig, M.V. and Gener, T., ACS Chem. Neurosci., 2015, vol. 6, pp. 1017–1025.

    Article  PubMed  CAS  Google Scholar 

  20. Lanshakov, D.A., Drozd, U.S., and Dygalo, N.N., Biochemistry (Moscow), 2017, vol. 82, pp. 340–344.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Dygalo.

Additional information

Original Russian Text © N.N. Dygalo, T.S. Kalinina, G.T. Shishkina, 2018, published in Neirokhimiya, 2018, Vol. 35, No. 2, pp. 155–159.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dygalo, N.N., Kalinina, T.S. & Shishkina, G.T. The Effects of Short-Term Stress and Long-Term Fluoxetine Treatment on the Expression of Apoptotic Proteins in the Brain. Neurochem. J. 12, 155–158 (2018). https://doi.org/10.1134/S1819712418020034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712418020034

Keywords

Navigation