Skip to main content
Log in

Age Related Effects of Levodopa on Rat Brain Striatal Acetylcholinesterase

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Long-term treatment of Parkinson’s disease (PD) with levodopa is accompanied by dyskinesia. Alteration in striatal acetylcholine signaling is partly responsible, but the involved mechanisms have yet to be determined. This study aimed to compare repeated levodopa treatment on dopamine (DA) content and acetylcholinesterase (AChE) activity in the young and old rat brain striatum. Male Wistar rats (3 and 30 months old) were injected with a mixture of levodopa + carbidopa (10 + 1 mg/kg). Control animals received normal saline only. Rats were killed and brain striatum was homogenized and centrifuged at 4°C. AChE activity was assayed in the supernatant and DA was extracted from the homogenate and measured by high performance liquid chromatography with electrochemical detection. The levels of DA in young and aged rats were 53.1 ± 4.5 and 28.4 ± 3.1 nmol/ g wet weight tissue respectively. AChE activity in corresponding supernatant was 32.4 ± 2.7 and 58.1 ± 3.3 μmol/min/mg protein. A single dose of the drug mixture increased DA content and decreased AChE activity in both ages. When the drug mixture was injected daily for a period of 30 days, a lower DA content and a higher AChE activity were observed, though the changes were more pronounced in the aged animals. The result indicates that long-term treatment with levodopa + carbidopa in aged rat renders a dramatic rise in the striatal AChE, leading to imbalance ACh/DA levels in the striatum. It is concluded that AChE might be considered as a therapeutic target for combating levodopa-induced dyskinesia affecting PD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalia, L.V. and Lang, A.E., Lancet, 2015, vol. 386, no. 9996, pp. 896–912.

    Article  CAS  PubMed  Google Scholar 

  2. Roper, J.A., Kang, N., Ben, J., Cauraugh, J.H., Okun, M.S., and Hass, C.J., J. Neurol., 2016, vol. 263, no. 6, pp. 1195–1203.

    Article  CAS  PubMed  Google Scholar 

  3. Suppa, A., Bologna, M., Conte, A., Berardelli, A., and Fabbrini, G., Exp. Rev. Neurotherap., 2017, vol. 17, no. 2, pp. 181–192.

    Article  CAS  Google Scholar 

  4. Tomlinson, C.T., Stowe, R., Patei, S., Rick, C., Gray, R., and Clarke, C.E., Mov. Disord., 2010, vol. 25, no. 15, pp. 2649–2653.

    Article  PubMed  Google Scholar 

  5. Fabbrini, G., Brotchie, J.M., Grandas, F., Nomoto, M., and Goetz, C.G. Mov. Disord., 2007, vol. 22. no. 10, pp. 1379–1389.

    Article  PubMed  Google Scholar 

  6. Dekundy, A., Lundblad, M., Danysz, W., and Cenci, M.A., Behav. Brain Res., 2007, vol. 179, no. 1, pp. 76–89.

    Article  CAS  PubMed  Google Scholar 

  7. Conti, M.M., Meadows, S.M., Melikhov-Sosin, M., Lindenbach, D., Hallmark, J., Werner, D.F., and Bishop, C., Neuropharmacology, 2016, vol. 110 (part A), pp. 125–134.

    Article  CAS  PubMed  Google Scholar 

  8. Pahwa, R. and Lyons, K.E., Cur. Med. Res. Opin., 2009, vol. 25, no. 4, pp. 841–849.

    Article  CAS  Google Scholar 

  9. Hernández, V.S., Luquín, S., Jáuregui-Huerta, F., Corona-Morales, A.A., Medina, M.P., Ruíz-Velasco, S., and Zhang, L., Neuropharmacology, 2014, vol. 82, pp. 88–100.

    Article  PubMed  Google Scholar 

  10. Alcantara, A.A., Chen, V., Herring, B.E., Mendenhall, J.M., and Berlanga, M.L. Brain Res., 2003, vol. 986, nos. 1–2, pp. 22–29.

    Article  CAS  PubMed  Google Scholar 

  11. Threlfell, S., Lalic, T., Platt, N.J., Jennings, K.A., Deisseroth, K., and Cragg, S.J. Neuron, 2012, vol. 75, no. 1, pp. 58–64.

    Article  CAS  PubMed  Google Scholar 

  12. Chuhma, N., Mingote, S., Moore, H., and Rayport, S., Neuron, 2014, vol. 81, no. 4, pp. 901–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Straub, C., Tritsch, N.X., Hagan, N.A., Gu, C., and Sabatini, B., J. Neurosci., 2014, vol. 34, no. 25, pp. 8557–8569.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hoebel, B.G., Avena, N., and Rada, M.P., Curr. Opin. Pharmacol., 2007, vol. 7, no. 6, pp. 617–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V., and Di Filippo, M., Nat. Neurosci., 2014, vol. 17, no. 8, pp. 1022–1030.

    Article  CAS  PubMed  Google Scholar 

  16. Aosaki, T., Miura, M., Takeo-Suzuki, T., Nishimura, K., and Masuda, M. Geriatr. Gerontol. Int., 2010, vol. 10, pp. S148–S157.

    Article  PubMed  Google Scholar 

  17. Gonzales, K.K., Ann. NY Acad. Sci., 2015, vol. 1349, pp. 1–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aosaki, T., Miura, M., and Masuda, M. Brain Nerve, 2009, vol. 61, no. 4, pp. 373–380.

    CAS  PubMed  Google Scholar 

  19. Lester, D.B., Rogers, T.D., and Blaha, C.D., CNS Neurosci. Ther., 2010, vol. 16, no. 3, pp. 137–162.

    Article  CAS  PubMed  Google Scholar 

  20. Brock, M., Nickel, A.C., Madziar, B., Blusztajn, J.K., and Berse, B., Brain Res., 2007, vol. 1145, pp. 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuhl, D.E., Minoshima, S., Fessler, J.A., Frey, K.A., Foster, N.L., Ficaro, E.P., Wieland, D.M., and Koeppe, R.A., Ann. Neurol., 1996, vol. 40, no. 3, pp. 399–410.

    Article  CAS  PubMed  Google Scholar 

  22. Glowinski, J. and Iversen, L.L., J. Neurochem., 1966, vol. 13, no. 8, pp. 655–669.

    Article  CAS  PubMed  Google Scholar 

  23. Messripour, M. and Clark, J.B., J. Neurochem., 1982, vol. 38, no. 4, pp. 1139–1143.

    Article  CAS  PubMed  Google Scholar 

  24. Ellman, G.L., Courtney, D.K., Andreas, V., and Featherstone, R.M., Biochem. Pharmacol., 1961, vol. 7, pp. 88–95.

    Article  CAS  PubMed  Google Scholar 

  25. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.

    CAS  PubMed  Google Scholar 

  26. Baranyi, M., Porceddu, P., Gölöncsér, F., Kulcsár, S., Otrokocsi, L., Kittel, Á., Pinna, A., Frau, L., Huleatt, P.B., Khoo, M.L., Chai, C.L., Dunkel, P., Mátyus, P., Morelli, M., and Sperlágh, B., Mol. Neurodegener., 2016, vol. 11, no. 6, pp. 1–22.

    Google Scholar 

  27. Messripour, M. and Clark, J.B., Neurochem. Int., 1985, vol. 7, no. 5, pp. 811–818.

    Article  CAS  PubMed  Google Scholar 

  28. Daubner, S.C., Le, T., and Wang, S., Arch. Biochem. Biophys., 2011, vol. 508, no. 1, pp. 1–12.

    Article  CAS  PubMed  Google Scholar 

  29. Heikkila, R.E., Manzino, L., and Cabbat, F.S., Nature, 1984, vol. 311, no. 5985, pp. 467–469.

    Article  CAS  PubMed  Google Scholar 

  30. Okada, M., Nakao, R., Hosoi, R., Zhang, M.R., Fukumura, T., Suzuki, K., and Inoue, O., J. Cerebral Blood Flow Metabol., 2011, vol. 31, no. 1, pp. 124–131.

    Article  CAS  Google Scholar 

  31. Lindgren, N., Xu, Z.Q., Herrera-Marschitz, M., Haycock, J., Hökfelt, T., and Fisone, G., Eur. J. Neurosci., 2001, vol. 13, no. 4, pp. 773–780.

    Article  CAS  PubMed  Google Scholar 

  32. Dreyer, J.K., J. Neurosci., 2014, vol. 34, no. 37, pp. 12444–12456.

    Article  PubMed  Google Scholar 

  33. Zhang, D., Mallela, A., Sohn, D., Carroll, F.I., Bencherif, M., Letchworth, S., and Quik, M., J. Pharmacol. Exp. Ther., 2013, vol. 347, no. 1, pp. 225–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Freeze, B.S., Kravitz, A.V., Hammack, N., Berke, J.D., and Kreitzer, A.C., J. Neurosci., 2013, vol. 33, no. 47, pp. 18531–18539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pignatelli, M. and Bonci, A., Neuron, 2015, vol. 86, vol. 5, pp. 1145–1157.

    Article  CAS  PubMed  Google Scholar 

  36. Santangelo, G., Barone, P., Trojano, L., and Vitale, C., Parkinson. Rel. Disord., 2013, vol. 19, no. 7, pp. 645–653.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Messripour.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messripour, M., Gheisary, M.M. & Mesripour, A. Age Related Effects of Levodopa on Rat Brain Striatal Acetylcholinesterase. Neurochem. J. 12, 48–52 (2018). https://doi.org/10.1134/S1819712418010105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712418010105

Keywords

Navigation