Skip to main content
Log in

The stress effects of a single injection of isotonic saline solution: systemic (blood) and central (frontal cortex and dorsal and ventral hippocampus)

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

In experiments with animals, a group that is injected with the vehicle in which a drug of interest is dißsolved is often used as a control. However, even a single injection of a vehicle is a stressor, i.e., “treatment stress,” which may significantly affect some stress-sensitive indices. In the present study, we report some data on the effects of a single intraperitoneal injection of isotonic saline solution on the contents of corticosterone, nitric oxide metabolites, and oxidative capacity, as well as on the expression of proteins and mRNAs of proinflammatory cytokines in the blood and brain regions of rats within one day after the injection as compared to intact animals. At the early time points after the injection, corticosterone contents were substantially elevated in the blood and ventral hippocampus. The content of nitric oxide metabolites decreased in the blood and remained stably low within 2–24 h after the injection. The injection did not affect the contents of proinflammatory cytokines in the blood; however, early after the injection the expression of IL-1ß mRNA decreased in the ventral hippocampus and frontal cortex, whereas 24 h after this treatment, the expression of TNF-a mRNA increased by a factor of 4 in the frontal cortex. Thus, a single injection of isotonic saline solution had a clear stress-producing effect, which was observed at the systemic level and in stress-sensitive brain regions. The strength of this stressful event was sufficient to activate the hypothalamus–pituitary–adrenal axis but not sufficient to induce a significant inflammatory response. The frontal cortex was most sensitive to this treatment; the alterations in the ventral hippocampus were less expressed, whereas the dorsal hippocampus was most stress resistant. Our data show that it is important to consider and thoroughly analyze the effects of “treatment stress” in experiments using injections of biologically active substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

VH:

ventral hippocampus

HPAA:

hypothalamus- pituitary-adrenal axis

DH:

dorsal hippocampus

IL-1ß:

interleukin-1ß

IL-6:

interleukin-6

FC:

frontal cortex

TNF-α:

tumor necrosis factor-α

References

  1. McEwen, B.S., Neuroimage, 2009, vol. 47, pp. 911–913.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Armario, A., Martí, O., Vallès, A., Dal-Zotto, S., and Ons, S., Ann. NY Acad. Sci., 2004, vol. 1018, pp. 162–172.

    Article  CAS  PubMed  Google Scholar 

  3. Armario, A., Escorihuela, R., and Nadal, R., Neurosci. Biobehav. Rev., 2008, vol. 32, pp. 1121–1135.

    Article  CAS  PubMed  Google Scholar 

  4. Fernandes, G., Perks, P., Cox, N., Lightman, S., Ingram, C., and Shanks, N., J. Neuroendocrinol., 2002, vol. 14, pp. 593–602.

    Article  CAS  PubMed  Google Scholar 

  5. Ulrich-Lai, Y.M. and Herman, J.P., Nat. Rev. Neurosci., 2009, vol. 10, pp. 397–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fanselow, M. and Dong, H., Neuron, 2010, vol. 65, pp. 7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Segal, M., Richter-Levin, G., and Maggio, N., Hippocampus, 2010, vol. 20, pp. 1332–1338.

    Article  PubMed  Google Scholar 

  8. Feldman, S. and Weidenfeld, J., Brain Res., 2001, vol. 911, pp. 22–26.

    Article  CAS  PubMed  Google Scholar 

  9. Reul, J. and de Kloet, E., Endocrinology, 1985, vol. 117, pp. 2505–2511.

    Article  CAS  PubMed  Google Scholar 

  10. Herman, J., Cell. Mol. Neurobiol., 1993, vol. 13, pp. 349–372.

    Article  CAS  PubMed  Google Scholar 

  11. Johnson, J., Campisi, J., Sharkey, C., Kennedy, S., Nickerson, M., Greenwood, B., and Fleshner, M., Neuroscience, 2005, vol. 135, pp. 1295–1307.

    Article  CAS  PubMed  Google Scholar 

  12. Ryabinin, A., Wang, Y., and Finn, D., Pharmacol. Biochem. Behav., 1999, vol. 63, pp. 143–151.

    Article  CAS  PubMed  Google Scholar 

  13. Asanuma, M. and Ogawa, N., Rev. Neurosci., 1994, vol. 5, pp. 171–178.

    CAS  PubMed  Google Scholar 

  14. Miranda, K., Espey, M., and Wink, D., Nitric Oxide Biol. Chem., 2001, vol. 5, pp. 62–71.

    Article  CAS  Google Scholar 

  15. Verde, V., Fogliano, V., Ritieni, A., Maiani, G., Morisco, F., and Caporaso, N., Free Radic. Res., 2002, vol. 36, pp. 869–873.

    Article  CAS  PubMed  Google Scholar 

  16. Myhre, O., Andersen, J., Aarnes, H., and Fonnum, F., Biochem. Pharmacol., 2003, vol. 65, pp. 1575–1582.

    Article  CAS  PubMed  Google Scholar 

  17. Dallman, M. and Jones, M., Endocrinology, 1973, vol. 92, pp. 1367–1375.

    Article  CAS  PubMed  Google Scholar 

  18. Fanselow, M. and Dong, H., Neuron, 2010, vol. 65, pp. 7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moncada, S., Palmer, R., and Higgs, E., Pharmacol. Rev., 1991, vol. 43, pp. 109–142.

    CAS  PubMed  Google Scholar 

  20. Carda, A., Marchi, K., Rizzi, E., Mecawi, A., Antunes-Rodrigues, J., Padovan, C., and Tirapelli, C., Stress, 2015, vol. 18, pp. 233–243.

    Article  CAS  PubMed  Google Scholar 

  21. Sayre, L., Perry, G., and Smith, M., Chem. Res. Toxicol., 2008, vol. 21, pp. 172–188.

    Article  PubMed  Google Scholar 

  22. Zlatkovic, J., Todorovic, N., Boškovic, M., Pajovic, S., Demajo, M., and Filipovic, D., Mol. Cell. Biochem., 2014, vol. 393, pp. 43–57.

    Article  CAS  PubMed  Google Scholar 

  23. Haddad, J., Saadé, N., and Safieh-Garabedian, B., J. Neuroimmunol., 2002, vol. 133, pp. 1–19.

    Article  CAS  PubMed  Google Scholar 

  24. Sorrells, S., Caso, J., Munhoz, C., and Sapolsky, R., Neuron, 2009, vol. 64, pp. 33–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gadek-Michalska, A., Tadeusz, J., Rachwalska, P., Spyrka, J., and Bugajski, J., Pharmacol. Rep., 2011, vol. 63, pp. 1393–1403.

    Article  CAS  PubMed  Google Scholar 

  26. Advani, T., Koek, W., and Hensler, J., Int. J. Neuropsychopharmacol., 2009, vol. 12, pp. 583–588.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Onufriev.

Additional information

Original Russian Text © S.V. Freiman, M.V. Onufriev, M.Yu. Stepanichev, Yu.V. Moiseeva, N.A. Lazareva, N.V. Gulyaeva, 2016, published in Neirokhimiya, 2016, Vol. 33, No. 2, pp. 122–127.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freiman, S.V., Onufriev, M.V., Stepanichev, M.Y. et al. The stress effects of a single injection of isotonic saline solution: systemic (blood) and central (frontal cortex and dorsal and ventral hippocampus). Neurochem. J. 10, 115–119 (2016). https://doi.org/10.1134/S1819712416020033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712416020033

Keywords

Navigation