Skip to main content
Log in

Long-lived newly formed neurons in the mature brain are involved in the support of learning and memory processes

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Using immunohistochemistry, we stained cells with BrdU (for detection of newly formed cells), NeuN (a neuronal specific marker), c-Fos (a marker of neuronal plasticity), and ApoDNA (marker of apoptotic cells) in the cerebellar vermis, dentate gyrus and CA1-CA4 fields of the hippocampus, motor, and retrosplenial cortex of the right and left brain hemispheres in adult rats. Animals were trained in spatial skills in the Morris water maze or were subjected to a soft forced-swimming test 6 months after a 14-day intracerebral administration of BrdU. Significant differences in the amount and composition of the labeled cells in the trained and control rats were found. The relationship between the number of new neural cells and the parameters of the formation of long-term spatial memory was determined. The results indicate that the newly formed neurons with an age of 6 months, as well as the neural cell precursors of the relevant brain structures, are selectively involved in the support of long-term spatial memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gomazkov, O.A., Neirogenez kak adaptivnaya funktsiya mozga (Neurogenesis as an Adaptive Function of the Adult Brain), Moscow: IKAR, 2013.

    Google Scholar 

  2. Koehl, M. and Abrous, D.N., Eur. J. Neurosci., 2011, vol. 33, pp. 1101–1114.

    Article  PubMed  Google Scholar 

  3. Shyder, J.S. and Cameron, H.A., Behav. Brain Res., 2012, vol. 227, pp. 384–390.

    Article  Google Scholar 

  4. Zhao, C., Deng, W., and Gage, F.H., Cell, 2008, vol. 132, pp. 645–660.

    Article  CAS  PubMed  Google Scholar 

  5. Gould, E. and Gross, C.G., J.Neurosci., 2002, vol. 22, pp. 619–623.

    CAS  PubMed  Google Scholar 

  6. Kim, W.R., Christian, K., Ming, G.L., and Song, H., Behav. Brain Res., 2012, vol. 227, pp. 470–479.

    Article  PubMed  Google Scholar 

  7. Chae, C.H., Lee, H.C., Jung, S.L., Kim, T.W., Kim, N.S., and Kim, H.T., Neuroscience, 2012, vol. 212, pp. 30–37.

    Article  CAS  PubMed  Google Scholar 

  8. Ramirez-Amaya, V., Marrone, D.F., Gage, F.H., Warley, P.H., and Barnes, C.A., J. Neurosci., 2006, vol. 26, pp. 1237–1241.

    Article  Google Scholar 

  9. Zhao, M., Momma, S., Delfani, K., Carlen, M., Cassidy, R.M., Johanson, C.D., Brismar, H., Shupliakov, O., Frisen, J., and Janson, A.M., Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 1925–1930.

    Google Scholar 

  10. Paxinos, G. and Watson, C., The Rat Brain in Steriootaxic Coordinates, Oxford: Acad. Press, 1998.

    Google Scholar 

  11. Kempermann, G., Adult Neurogenesis, Stem Cells and Neuronal Development in Brain, Oxford: University Press, 2005.

    Google Scholar 

  12. Sherstnev, V.V., Yurasov, V.V., Storozheva, Z.I., Gruden’, M.A., and Proshin, A.T., Neirokhimiya, 2010, vol. 27, pp. 130–127.

    CAS  Google Scholar 

  13. Herdegen, T. and Leah, J.D., Brain Res. Rev., 1998, no. 28, pp. 370–490.

    Google Scholar 

  14. Stone, S.S.D., Teixeira, C.M., Zaslavsky, R., Wheeler, A.L., Martinez-Canabal, A., Wang, A.H., Sakaguchi, M., Lozano, A.M., and Frankland, P.W., Hippocampus, 2011, vol. 21, pp. 1348–1362.

    Article  PubMed  Google Scholar 

  15. Coras, R., Siebzehnrubl, F.A., Pouli, E., et al., Brain, 2010, vol. 133, pp. 3359–3372.

    Article  PubMed  Google Scholar 

  16. Leuner, D., Gould, E., and Shors, T.J., Hippocampus, 2006, vol. 16, pp. 216–224.

    Article  PubMed  Google Scholar 

  17. Lemaire, V., Tronel, S., Montaron, M., Fabre, F., Dugast, E., and Abrous, D.N., J. Neurosci., 2012, vol. 32, pp. 3101–3108.

    Article  CAS  PubMed  Google Scholar 

  18. Marrone, D.F., Ramires-Amaya, V., and Barnes, C., Hippocampus, vol. 22, pp. 1134–1142.

  19. Cameron, H.A. and Dayer, A.G., Biol. Psychiatry, 2008, vol. 63, pp. 650–655.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sandoval, C.J., Martinez-Claros, M., Bello-Medina, O., Perez, O., and Ramirez-Amaya, V., Plos One, 2011, vol. 6, pp. e17689.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sherstnev, V.V., Abstracts of Papers, Neirokhimicheskie mekhanizmy formirovaniya adaptivnykh i plasticheskikh sostoyanii mozga (Neurochemical mechanisms of the formation of the adaptive and plastic states of the brain), St. Petersburg, 2008, p. 161.

    Google Scholar 

  22. Aleksandrov, Yu.I., Zh. Vyssh. Nerv. Deiat. I.P. Pavlova, 2005, vol. 55, pp. 842–860.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sherstnev.

Additional information

Original Russian Text © V.V. Sherstnev, M.A. Gruden’, O.N. Golubeva, Yu.I. Aleksandrov, O.A. Solov’eva, 2015, published in Neirokhimiya, 2015, Vol. 32, No. 1, pp. 19–26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherstnev, V.V., Gruden’, M.A., Golubeva, O.N. et al. Long-lived newly formed neurons in the mature brain are involved in the support of learning and memory processes. Neurochem. J. 9, 13–19 (2015). https://doi.org/10.1134/S1819712415010080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712415010080

Keywords

Navigation