Skip to main content
Log in

Stimuli-Responsive Systems Based on Polymer-like Wormlike Micelles of Ionic Surfactants and Their Modern Applications

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

Solutions based on polymer-like micelles of ionic surfactants attract the attention of scientists as stimuli-responsive systems that can transform from a low-viscosity Newtonian fluid to a viscoelastic solution having a viscosity of up to 10 kPa s and an elastic response. The shape of micelles and their length are determined by the balance of hydrophobic and electrostatic interactions; therefore, the use of various low molecular weight substances or functional nanoparticles as additives can significantly change the rheological properties of such solutions and impart new stimuli-responsive properties to them. This review presents the most commonly used methods for controlling the properties of multicomponent solutions of wormlike surfactant micelles, including nanocomposite systems. Modern areas of practical application of such systems and prospects for their development are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. J. N. Israelachvili, D. J. Mitchell, and B. W. Ninham, J. Chem. Soc., Faraday Trans. 2 72, 1525 (1976).

    CAS  Google Scholar 

  2. C. A. Dreiss, Soft Matter 3, 956 (2007).

    CAS  PubMed  Google Scholar 

  3. L. J. Magid, J. Phys. Chem. B 102 (21), 4064 (1998).

    CAS  Google Scholar 

  4. M. E. Cates and S. J. Candau, J. Phys., Condens. Matter 2 (33), 6869 (1990).

    CAS  Google Scholar 

  5. A. L. Kwiatkowski, V. S. Molchanov, and O. E. Philippova, Polymer Science, Ser. A 61 (2), 215 (2019).

    CAS  Google Scholar 

  6. S. R. Raghavan and E. W. Kaler, Langmuir 17, 300 (2001).

    CAS  Google Scholar 

  7. L. Y. Zakharova, E. A. Vasilieva, A. B. Mirgorodskaya, S. V. Zakharov, R. V. Pavlov, N. E. Kashapova, and G. A. Gaynanova, J. Mol. Liq. 370, 120923 (2023).

  8. S. R. Raghavan, G. Fritz, and E. W. Kaler, Langmuir 18 (10), 3797 (2002).

    CAS  Google Scholar 

  9. R. Kumar, G. C. Kalur, L. Ziserman, D. Danino, and S. R. Raghavan, Langmuir 23 (26), 12849 (2007).

    CAS  PubMed  Google Scholar 

  10. V. S. Molchanov, A. I. Kuklin, A. S. Orekhov, N. A. Arkharova, and O. E. Philippova, J. Mol. Liq. 342, 116955 (2021).

  11. S. Rózańska, Colloids Surf., A 482, 394 (2015).

    Google Scholar 

  12. R. D. Koehler, S. R. Raghavan, and E. W. Kaler, J. Phys. Chem. B 104, 11035 (2000).

  13. S. U. Egelhaaf, M. Müller, and P. Schurtenberger, Langmuir 14 (16), 147 (1998).

    Google Scholar 

  14. C. Sommer, J. S. Pedersen, S. U. Egelhaaf, L. Cannavacciuolo, J. Kohlbrecher, and P. Schurtenberger, Langmuir 18 (17), 2495 (2002).

    CAS  Google Scholar 

  15. R. Granek and M. E. Cates, J. Chem. Phys. 96 (6), 4758 (1992).

    CAS  Google Scholar 

  16. M. S. Turner, C. Marques, and M. E. Cates, Langmuir 9 (3), 695 (1993).

    CAS  Google Scholar 

  17. A. Khatory, F. Kern, F. Lequeux, J. Appell, G. Porte, N. Morie, A. Ott, and W. Urbach, Langmuir 9 (29), 933 (1993).

    CAS  Google Scholar 

  18. M. E. Cates and S. M. Fielding, Adv. Phys. 55 (7–8), 799 (2006).

    CAS  Google Scholar 

  19. H. von Berlepsh, H. Dautzenberg, G. Rother, and J. Jager, Langmuir 12, 3613 (1996).

  20. A. Y. Grosberg, A. R. Khokhlov, and J. N. Onuchic, Phys. Today 48 (9), 92 (1995).

    Google Scholar 

  21. C. Flood, C. A. Dreiss, V. Croce, T. Cosgrove, and G. G. Karlsson, Langmuir 21 (17), 7646 (2005).

    CAS  PubMed  Google Scholar 

  22. V. Croce, T. Cosgrove, G. Maitland, and T. Hughes, Langmuir 19 (10), 8536 (2003).

    CAS  Google Scholar 

  23. S. A. Rogers, M. A. Calabrese, and N. J. Wagner, Curr. Opin. Colloid Interface Sci. 19 (6), 530 (2014).

    CAS  Google Scholar 

  24. H. Watanabe, Prog. Polym. Sci. 24 (9), 1253 (1999).

    CAS  Google Scholar 

  25. S. Ghosh, D. Khatua, and J. Dey, Langmuir 27 (9), 5184 (2011).

    CAS  PubMed  Google Scholar 

  26. L. Li, Y. Yang, J. Dong, and X. Li, J. Colloid Interface Sci. 343 (2), 504 (2010).

    CAS  PubMed  Google Scholar 

  27. G. C. Kalur, B. D. Frounfelker, B. H. Cipriano, A. I. Norman, and S. R. Raghavan, Langmuir 21 (24), 10998 (2005).

    CAS  PubMed  Google Scholar 

  28. Z. Chu, C. A. Dreiss, and Y. Feng, Chem. Soc. Rev. 42, 7174 (2013).

    CAS  PubMed  Google Scholar 

  29. S. Ezrahi, E. Tuval, and A. Aserin, Adv. Colloid Interface Sci. 130 (2006), 77 (2007).

  30. O. E. Philippova and V. S. Molchanov, Curr. Opin. Colloid Interface Sci. 43, 52 (2019).

    CAS  Google Scholar 

  31. F. Nettesheim, M. W. Liberatore, T. K. Hodgdon, N. J. Wagner, E. W. Kaler, and M. Vethamuthu, Langmuir 24 (15), 7718 (2008).

    CAS  PubMed  Google Scholar 

  32. M. E. Helgeson, T. K. Hodgdon, E. W. Kaler, N. J. Wagner, M. Vethamuthu, and K. P. Ananthapadmanabhan, Langmuir 26 (11), 8049 (2010).

    CAS  PubMed  Google Scholar 

  33. V. A. Pletneva, V. S. Molchanov, and O. E. Philippova, Langmuir 31 (1), 110 (2015).

    CAS  PubMed  Google Scholar 

  34. L. Liu, C. Zheng, and H. Lu, J. Dispers. Sci. Technol. 38, 1824 (2017).

    CAS  Google Scholar 

  35. Y. Zhang, Y. Han, Z. Chu, S. He, J. Zhang, and Y. Feng, J. Colloid Interface Sci. 394, 319 (2013).

    CAS  PubMed  Google Scholar 

  36. H. Maeda, A. Yamamoto, M. Souda, H. Kawasaki, K. S. Hossain, N. Nemoto, and M. Almgren, J. Phys. Chem. B 105 (23), 5411 (2001).

    CAS  Google Scholar 

  37. H. Lu, C. Zheng, M. Xue, and Z. Huang, Phys. Chem. Chem. Phys. 18 (47), 32192 (2016).

    CAS  PubMed  Google Scholar 

  38. G. Verma, V. K. Aswal, and P. Hassan, Soft Matter 5 (15), 2919 (2009).

    CAS  Google Scholar 

  39. Z. Liu, P. Wang, S. Pei, B. Liu, X. Sun, and J. Zhang, Colloids Surf., A 506, 276 (2016).

    CAS  Google Scholar 

  40. S. Ye, Z. Zhai, S. Shang, and Z. Song, J. Mol. Liq. 361, 119445 (2022).

  41. Y. Liu, P. G. Jessop, M. Cunningham, C. A. Eckert, and C. L. Liotta, Science 313 (5789), 958 (2006).

    CAS  PubMed  Google Scholar 

  42. Y. Zhang, Y. Feng, Y. Wang, and X. Li, Langmuir 29 (13), 4187 (2013).

    CAS  PubMed  Google Scholar 

  43. Y. Lu, D. Sun, J. Ralston, Q. Liu, and Z. Xu, J. Colloid Interface Sci. 557, 185 (2019).

    CAS  PubMed  Google Scholar 

  44. Y. Zhang, H. Yin, and Y. Feng, Green Mater. 2, 95 (2014).

    Google Scholar 

  45. M. Zhao, H. He, C. Dai, X. Wu, Y. Zhang, Y. Huang, and C. Gu, J. Mol. Liq. 268, 875 (2018).

    CAS  Google Scholar 

  46. Y. Bi, T. Wang, J. Xiao, and L. Yu, Colloids Surf., A 668, 131441 (2023).

  47. L.-S. Hao, C. Yuan, H.-L. Zhong, J.-W. Ling, H.‑X. Wang, and Y.-Q. Nan, J. Mol. Liq. 364, 120010 (2022).

  48. W. Liu, Y. Wang, Y. Tan, Z. Ye, Q. Chen, and Y. Shang, RSC Adv. 12 (53), 34601 (2022).

    PubMed  PubMed Central  Google Scholar 

  49. G. Wang, M. Lin, Q. Xu, J. Jiang, R. Zheng, and Y. He, J. Dispers. Sci. Technol. 44, 1 (2023).

  50. J. Zhang, Q. Xu, and J. Jiang, J. Dispers. Sci. Technol. 44 (9), 1750 (2023).

    CAS  Google Scholar 

  51. D. Lv, Q. Liu, H. Wu, Y. Cheng, C. Wang, B. Yin, X. Wei, and J. Li, Soft Matter 17 (40), 9210 (2021).

    CAS  PubMed  Google Scholar 

  52. J. Li, Q. Liu, R. Jin, B. Yin, X. Wei, and D. Lv, J. Ind. Eng. Chem. 109, 173 (2022).

    CAS  Google Scholar 

  53. J. Zhang, Q. Xu, F. Wang, and J. Jiang, Langmuir 35 (47), 15242 (2019).

    CAS  PubMed  Google Scholar 

  54. J. Jiang, D. Zhang, J. Yin, and Z. Cui, Soft Matter 13 (37), 6458 (2017).

    CAS  PubMed  Google Scholar 

  55. M. E. Helgeson, N. J. Wagner, J. Chem. Phys. 135, 084901 (2011).

    PubMed  Google Scholar 

  56. W. Qin, L. Yue, G. Liang, G. Jiang, J. Yang, and Y. Liu, Chem. Eng. Res. Des. 123 (18), 14 (2017).

    CAS  Google Scholar 

  57. M. Luo, Z. Jia, H. Sun, L. Liao, and Q. Wen, Colloids Surf., A 395, 267 (2012).

    CAS  Google Scholar 

  58. V. S. Molchanov, M. A. Efremova, A. S. Orekhov, N. A. Arkharova, A. V. Rogachev, and O. E. Philippova, J. Mol. Liq. 314, 113684 (2020).

  59. V. S. Molchanov, A. I. Kuklin, A. S. Orekhov, N. A. Arkharova, E. S. Khudoleeva, and O. E. Philippova, Polymer Science, Ser. C 63 (2), 170 (2021).

    CAS  Google Scholar 

  60. M. Zhao, S. Liu, Y. Wu, R. Yan, Y. Li, and X. Guo, J. Mol. Liq. 346, 118236 (2022).

  61. K. B. Shishkhanova, V. S. Molchanov, A. N. Baranov, E. P. Kharitonova, A. S. Orekhov, N. A. Arkharova, and O. E. Philippova, J. Mol. Liq. 370, 121032 (2023).

  62. V. S. Molchanov, V. A. Pletneva, I. A. Klepikov, I. V. Razumovskaya, and O. E. Philippova, RSC Adv. 8 (21), 11589 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. V. S. Molchanov, I. A. Klepikov, I. V. Razumovskaya, and O. E. Philippova, Nanosyst. Phys. Chem. Math. 9 (3), 335 (2018).

    CAS  Google Scholar 

  64. J. S. Kumar, P. S. Paul, G. Raghunathan, and D. G. Alex, Int. J. Mech. Mater. Eng. 14 (1), 13 (2019).

    Google Scholar 

  65. K. A. Raj, A. Balikram, and K. Ojha, J. Mol. Liq. 345, 118241 (2022).

  66. N. Vaidya, V. Lafitte, S. M. Makarychev-Mikhailov, M. K. Panga, C. E. Nwafor, and B. R. Gadiyar, in Proceedings of the SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 7–9 February,2018, p. 189554.

  67. S. N. Shah, N. H. Shanker, and C. C. Ogugbue, in Proceedings of 2010 AADE Fluids Conference and Exhibition, Houston, Texas, April 6–7, 2010, p. AADE-10-DF-HO-41.

  68. W. Al-Sadat, M. S. Nasser, F. Chang, H. A. Nasr-El-Din, and I. A. Hussein, J. Pet. Sci. Eng. 124, 341 (2014).

    CAS  Google Scholar 

  69. W. Kang, S. J. Mushi, H. Yang, P. Wang, and X. Hou, J. Pet. Sci. Eng. 190, 107107 (2020).

  70. M. Samuel, R. J. Card, E. B. Nelson, J. E. Brown, P. S. Vinod, H. L. Temple, Q. Qu, and D. K. Fu, SPE Drill Compl. 14 (04), 240 (1999).

    Google Scholar 

  71. M. Silin, L. Magadova, D. Malkin, P. Krisanova, S. Borodin, and A. Filatov, Energies 15 (8), 2827 (2022).

    Google Scholar 

  72. G. A. Al-Muntasheri, in Proceedings of SPE Western North American and Rocky Mountain Joint Meeting, Denver, Colorado, April 17–18, 2014, p. SPE-169552-MS. https://doi.org/10.2118/169552-MS

  73. J. A. Shashkina, O. E. Philippova, Y. D. Zaroslov, A. R. Khokhlov, T. A. Pryakhina, and I. V. Blagodatskikh, Langmuir 21 (4), 1524 (2005).

    CAS  PubMed  Google Scholar 

  74. V. S. Molchanov, O. E. Philippova, A. R. Khokhlov, Y. A. Kovalev, and A. I. Kuklin, Langmuir 23 (1), 105 (2007).

    CAS  PubMed  Google Scholar 

  75. A. V. Shibaev, M. V. Tamm, V. S. Molchanov, A. V. Rogachev, A. I. Kuklin, E. E. Dormidontova, and O. E. Philippova, Langmuir 30 (13), 3705 (2014).

    CAS  PubMed  Google Scholar 

  76. M. R. Gurluk, H. A. Nasr-El-Din, and J. B. Crews, in Proceedings of 75th European Association of Geoscientists and Engineers Conference and Exhibition 2013: Incorporating SPE EUROPEC 2013 (London, EAGE–Curran Associates, 2014), p. SPE 164900.

  77. Y. Zhang, C. Dai, Y. Qian, X. Fan, J. Jiang, Y. Wu, X. Wu, Y. Huang, and M. Zhao, Colloids Surf., A 553, 244 (2018).

    CAS  Google Scholar 

  78. Y. Yang, H. Zhang, H. Wang, J. Zhang, Y. Guo, B. Wei, and Y. Wen, J. Pet. Sci. Eng. 208, 109608 (2022).

  79. S. Liu, M. Zhao, Y. Wu, Z. Gao, C. Dai, and P. Liu, Energy Fuels 36 (13), 7177 (2022).

    CAS  Google Scholar 

  80. J. L. Lumley, Annu. Rev. Fluid Mech. 1 (1), 367 (1969).

    CAS  Google Scholar 

  81. G. D. Rose and K. L. Foster, J. Nonnewton. Fluid Mech. 31 (1), 59 (1989).

    CAS  Google Scholar 

  82. Y. Qi and J. L. Zakin, Ind. Eng. Chem. Res. 41 (25), 6326 (2002).

    CAS  Google Scholar 

  83. Y. Qi, E. Kesselman, D. J. Hart, Y. Talmon, A. Mateo, and J. L. Zakin, J. Colloid Interface Sci. 354 (2), 691 (2011).

    CAS  PubMed  Google Scholar 

  84. P. D. Butler, L. J. Magid, W. A. Hamilton, J. B. Hayter, B. Hammouda, and P. J. Kreke, J. Phys. Chem. 100 (2), 442 (1996).

    CAS  Google Scholar 

  85. M. Takeda, T. Kusano, T. Matsunaga, H. Endo, M. Shibayama, and T. Shikata, Langmuir 27 (5), 1731 (2011).

    CAS  PubMed  Google Scholar 

  86. F. C. Li, J. C. Yang, W. W. Zhou, Y. R. He, Y. M. Huang, and B. C. Jiang, Thermochim. Acta 556, 47 (2013).

    CAS  Google Scholar 

  87. M. Luo, X. Si, M. Li, X. Jia, Y. Yang, and Y. Zhan, Nanomaterials 11, 885 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. L. García-Río, J. C. Mejuto, M. Pérez-Lorenzo, A. Rodríguez-Álvarez, and P. Rodríguez-Dafonte, Langmuir 21 (14), 6259 (2005).

    PubMed  Google Scholar 

  89. B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor, Chem. Rev. 104 (9), 3893 (2004).

    CAS  PubMed  Google Scholar 

  90. V. K. N. Gupta, A. Mehra, and R. Thaokar, Colloids Surf., A 393, 73 (2012).

    CAS  Google Scholar 

  91. J. Zhao, Q. Hu, Y. Lei, C. Gao, P. Zhang, B. Zhou, G. Zhang, W. Song, X. Lou, and X. Zhou, CrystEngComm 23 (32), 5498 (2021).

    CAS  Google Scholar 

  92. Y. Qiao, Y. Lin, Y. Wang, Z. Li, and J. Huang, Langmuir 27 (5), 1718 (2011).

    CAS  PubMed  Google Scholar 

  93. A. Chhatre, S. Duttagupta, R. Thaokar, and A. Mehra, Langmuir 31 (38), 10524 (2015).

    CAS  PubMed  Google Scholar 

  94. Y. Hu, J. Han, L. Ge, and R. Guo, Soft Matter 14 (5), 789 (2018).

    CAS  PubMed  Google Scholar 

  95. P. A. Cornwell, Int. J. Cosmet. Sci. 40 (1), 16 (2018).

    CAS  PubMed  Google Scholar 

  96. M. S. Lone, P. A. Bhat, R. A. Shah, O. A. Chat, and A. A. Dar, ChemistrySelect 2 (3), 1144 (2017).

    CAS  Google Scholar 

  97. V. I. Yavrukova, G. M. Radulova, K. D. Danov, P. A. Kralchevsky, H. Xu, Y. W. Ung, and J. T. Petkov, Adv. Colloid Interface Sci. 275, 1 (2020).

    Google Scholar 

  98. N. C. Christov, N. D. Denkov, P. A. Kralchevsky, K. P. Ananthapadmanabhan, and A. Lips, Langmuir 20 (3), 565 (2004).

    CAS  PubMed  Google Scholar 

  99. Z. Mitrinova, S. Tcholakova, and N. Denkov, Colloids Surf., A 537, 173 (2018).

    CAS  Google Scholar 

  100. A. López-Galindo, C. Viseras, and P. Cerezo, Appl. Clay Sci. 36 (1), 51 (2007).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 21-73-30013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Molchanov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molchanov, V.S., Philippova, O.E. Stimuli-Responsive Systems Based on Polymer-like Wormlike Micelles of Ionic Surfactants and Their Modern Applications. Polym. Sci. Ser. C 65, 113–127 (2023). https://doi.org/10.1134/S1811238223700340

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238223700340

Navigation