Skip to main content
Log in

Synthesis and Gas-Separation Properties of New Silacyclopentane-Containing Polynorbornenes

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

Previously, it was shown that the presence of bulky silicon-containing substituents in the monomer unit of metathesis polynorbornenes hinders the postmodification and, in particular, exhaustive gem-difluorocyclopropanation of main-chain double bonds. In order to reduce the double bonds shielding by substituents, a new polynorbornene with a dimethylsilacyclopentane fragment in the monomer unit, poly(4,4-dimethyltricyclo[5.2.1.02,6]-4-siladec-8-ene) (PNBCP), is synthesized, in which the silylmethyl group is moved further from the double bonds. In order to achieve this, the monomer 4,4-dimethyltricyclo[5.2.1.02,6]-4-siladec-8-ene (NBCP) is first obtained via the diene condensation of 1,3-cyclopentadiene and 1,1-dichlorosilacyclopent-3-ene with following methylation of Si-Cl bonds. NBCP is polymerized by the ring-opening metathesis scheme in the presence of the first-generation Grubbs catalyst, Cl2(PCy3)2Ru=CHPh. The new polymer PNBCP is obtained in a yield of 99–100% and characterized. The gem-difluorocyclopropanation of PNBCP with difluorocarbene, generated during the thermolysis of sodium chlorofluoroacetate, is studied; the conditions for exhaustive replacement of double bonds by gem-difluorocyclopropane are found. It is shown that PNBCP is more active in postmodification compared to poly(5-trimethylsilyl)norbornene but is less active than unsubstituted polynorbornene. It is demonstrated that the introduction of the silacyclopentane fragment into the monomer unit of the metathesis polynorbornene and its subsequent difluorocyclopropanation lead to increase in gas permeability and diffusion and cause a slight decrease in ideal separation selectivities. It is found that gem-difluorocyclopropanation increases the glass transition temperature of PNBCP by 60°C and makes its films stable when stored in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, Macromolecules 50, 7809 (2017).

    Article  CAS  Google Scholar 

  2. J. K. Adewole, A. L. Ahmad, S. Ismail, and C. P. Leo, Int. J. Greenhouse Gas Control 17, 46 (2013).

    Article  CAS  Google Scholar 

  3. Membrane Materials for Gas and Vapor Separation: Synthesis and Application of Silicon-Containing Polymers, Ed. by Yu. Yampolskii and E. Finkelshtein (Wiley, Chichester, 2017).

    Google Scholar 

  4. J. A. Cruz-Morales, J. Vargas, A. A. Santiago, S. R. Vásquez-García, M. A. Tlenkopatchev, T. D. Lys, and M. López-González, High Perform. Polym. 28, 1246 (2016).

    Article  CAS  Google Scholar 

  5. I. L. Borisov, T. R. Akmalov, A. O. Ivanov, V. V. Volkov, E. Sh. Finkelshtein, and M. V. Bermeshev, Mendeleev Commun. 26, 124 (2016).

    Article  CAS  Google Scholar 

  6. E. Sh. Finkelshtein, M. V. Bermeshev, M. L. Gringolts, L. E. Starannikova, and Yu. P. Yampolskii, Russ. Chem. Rev. 80, 341 (2011).

    Article  CAS  Google Scholar 

  7. Yu. P. Yampolskii, L. E. Starannikova, N. A. Belov, M. V. Bermeshev, M. L. Gringolts, and E. Sh. Finkelshtein, J. Membr. Sci. 453, 532 (2014).

    Article  CAS  Google Scholar 

  8. E. Sh. Finkelshtein, M. L. Gringolts, M. V. Bermeshev, P. P. Chapala, and Y. V. Rogan, in Membrane Materials for Gas and Vapor Separation, Ed. by Yu. Yampolskii and E. Finkelshtein (Wiley, Chichester, 2017), p. 143.

    Google Scholar 

  9. V. R. Flid, M. L. Gringolts, R. S. Shamsiev, and E. Sh. Finkelshtein, Russ. Chem. Rev. 87, 1169 (2018).

    Article  CAS  Google Scholar 

  10. G. O. Karpov, M. V. Bermeshev, I. L. Borisov, S. R. Sterlin, A. A. Tyutyunov, N. P. Yevlampieva, B. A. Bulgakov, V. V. Volkov, and E. Sh. Finkelshtein, Polymer 153, 626 (2018).

    Article  CAS  Google Scholar 

  11. P. P. Chapala, M. V. Bermeshev, L. E. Starannikova, N. A. Belov, V. E. Ryzhikh, V. P. Shantarovich, V. G. Lakhtin, N. N. Gavrilova, Yu. P. Yampolskii, and E. Sh. Finkelshtein, Macromolecules 48, 8055 (2015).

    Article  CAS  Google Scholar 

  12. M. V. Bermeshev and P. P. Chapala, Prog. Polym. Sci. 84, 1 (2018).

    Article  CAS  Google Scholar 

  13. D. A. Alentiev, E. S. Egorova, M. V. Bermeshev, L. E. Starannikova, M. A. Topchiy, A. F. Asachenko, P. S. Gribanov, M. S. Nechaev, Yu. P. Yampolskii, and E. Sh. Finkelshtein, J. Mater. Chem. A 6, 19393 (2018).

    Article  CAS  Google Scholar 

  14. D. A. Alentiev, D. M. Dzhaparidze, P. P. Chapala, M. V. Bermeshev, N. A. Belov, R. Yu. Nikiforov, L. E. Starannikova, Yu. P. Yampolskii, and E. Sh. Finkelshtein, Polym. Sci., Ser. B 60, 612 (2018).

    Article  CAS  Google Scholar 

  15. A. A. Morontsev, M. L. Gringolts, M. P. Filatova, and E. Sh. Finkelshtein, Polym. Sci., Ser. B 58, 695 (2016).

    Article  CAS  Google Scholar 

  16. N. A. Belov, M. L. Gringolts, A. A. Morontsev, L. E. Starannikova, Yu. P. Yampolskii, and E. Sh. Finkelshtein, Polym. Sci., Ser. B 59, 560 (2017).

    Article  CAS  Google Scholar 

  17. A. A. Morontsev, V. A. Zhigarev, R. Yu. Nikiforov, N. A. Belov, M. L. Gringolts, E. Sh. Finkelshtein, and Yu. P. Yampolskii, Eur. Polym. J. 99, 340 (2018).

    Article  CAS  Google Scholar 

  18. E. A. Chernyshev, N. G. Komalenkova, S. A. Bashkirova, and V. V. Sokolov, Zh. Obshch. Khim. 48 (110), 830 (1978).

    CAS  Google Scholar 

  19. Y. K. Kim, D. B. Bourrie, and O. R. Pierce, J. Polym. Sci.: Polym. Chem. Ed. 16, 483 (1978).

    CAS  Google Scholar 

  20. Yu. P. Yampol’skii, S. G. Durgar’yan, and N. S. Nametkin, Vysokomol. Soedin., Ser. B 21, 616 (1979).

    Google Scholar 

  21. T. Masuda, Y. Iguchi, B. Z. Tang, and T. Higashimura, Polymer 29, 2041 (1988).

    Article  CAS  Google Scholar 

  22. A. Yu. Alentiev, Yu. P. Yampolskii, V. A. Ryzhikh, and D. A. Tsarev, Pet. Chem. 53, 554 (2013).

    Article  CAS  Google Scholar 

  23. H. Y. Zhao, Y. M. Cao, X. L. Ding, M. Q. Zhou, and Q. Yuan, J. Membr. Sci. 323, 176 (2008).

    Article  CAS  Google Scholar 

  24. A. L. Ievlev, Y. Y. Teplyakov, S. G. Durgaryan, and N. S. Nametkin, Dokl. Akad. Nauk SSSR 264, 1421 (1982).

    CAS  Google Scholar 

  25. T. C. Merkel, V. I. Bondar, K. Nagai, and B. D. Freeman, J. Polym. Sci., Part B: Polym. Phys. 38, 273 (2000).

    Article  CAS  Google Scholar 

  26. L. M. Robeson, J. Membr. Sci. 320, 390 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The structure of the obtained compounds was studied using the equipment of the Shared Research Center of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences and the Center for Molecular Studies of the Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.

We are grateful to Dr. A.S. Peregudov for his help in determining the structure of the monomer and polymers, G.A. Shandryuk for DSC and TGA studies, and S.А. Korchagina for GPC analysis.

Funding

The study was performed under the State Program of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Morontsev.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhigarev, V.A., Morontsev, A.A., Nikiforov, R.Y. et al. Synthesis and Gas-Separation Properties of New Silacyclopentane-Containing Polynorbornenes. Polym. Sci. Ser. C 61, 107–119 (2019). https://doi.org/10.1134/S1811238219010181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238219010181

Navigation