Skip to main content
Log in

Evaporation and Boiling Heat Transfer at Film Irrigation of Horizontal Roughened Tubes

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Industrial shell and tube heat exchangers require often pipes of considerable length. The surface treatment of such tubes to enhance heat transfer parameters of the equipment must be cheap and simple in manufacturing. Two kinds of tube surface treatment are compared: sandblasting and machining. The tubes with OD = 10 mm, ID = 6 mm, and 625 mm long were tested within a bundle of horizontal tubes installed in a rectangular evaporator shell. Hot water pumped through bundle tubes used as a heat carrier. Refrigerant R21 at the pressure of \(\sim\)3 bara is used as working liquid. Tests have been performed at \(Re\) numbers from 500 to 1500. The micro-rough tubes (machined duralumin tube, sandblasted copper tube) provide considerable heat transfer enhancement at transition to bubble boiling. At low heat fluxes (evaporation regime) heat transfer on these tubes are close to plain tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

REFERENCES

  1. Corty, C. and Foust, A.S., Surface Variables in Nucleate Boiling, 1955, Chem. Eng. Prog., Symp., Ser. 51(17), pp. 1–12.

  2. Griffith, P. and Wallis, J.D., The Role of Surface Conditions in Nucleate Boiling, 1960, Chem. Eng. Prog., Symp., Ser. 56(30), pp. 49–63.

  3. Kurihara, H.M. and Myers, J.E., The Effects of Superheat and Surface Roughness on Boiling Coefficients, AIChE J., 1960, vol. 6, no. 1, pp. 83–91.

    Article  ADS  Google Scholar 

  4. Marto, P.J. and Rohsenow, W.M., Effects of Surface Conditions on Nucleate Pool Boiling of Sodium, ASME J. Heat Transfer, 1966, vol. 88, pp. 196–204.

    Article  Google Scholar 

  5. Webb, R.L., The Evolution of Enhanced Surface Geometries for Nucleate Boiling, Heat Transfer Eng., 1981, vol. 2, pp. 46–69.

    Article  ADS  Google Scholar 

  6. José, M. Saiz Jabardo, Gherhardt Ribatski, and Elvio Stelute, Roughness and Surface Material Effects on Nucleate Boiling Heat Transfer from Cylindrical Surfaces to Refrigerants R-134a and R-123, Exper. Thermal Fluid Sci., 2009, vol. 33, pp. 579–590.

    Article  Google Scholar 

  7. Farhan M. Haidary, Md. Rabbi Hasan, Mohammad Adib, Sadman H. Labib, Md. Jubayer Hossain, Abhishek K. Ghosh, and Anjan Goswami, Enhancement of Pool Boiling Heat Transfer over Plain and Rough Cylindrical Tubes International, J. Heat Technol., 2021, vol. 39, no. 2, pp. 329–336.

    Google Scholar 

  8. Benjamin J. Jones, John P. McHale, and Suresh Garimella, The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer, Birck NCN Publ., 2009, p. 480.

  9. Bradley D. Bock, Josua P. Meyer, and John R. Thome, Falling Film Boiling and Pool Boiling on Plain Circular Tubes: Influence of Surface Roughness, Surface Material and Saturation Temperature on Heat Transfer and Dryout, Exper. Thermal Fluid Sci., 2019, vol. 109, p. 109870.

    Article  Google Scholar 

  10. Bradley D. Bock, Matteo Bucci, Christos N. Markides, John R. Thome, and Josua P. Meyer, Falling Film Boiling of Refrigerants over Nanostructured and Roughened Tubes: Heat Transfer, Dryout and Critical Heat Flux, Int. J. Heat Mass Transfer, 2020, vol. 163, p. 120452.

    Article  Google Scholar 

  11. Bradley D. Bock, Surface Influences on Falling Film Boiling and Pool Boiling of Saturated Refrigerants. Influences of Nanostructures, Roughness and Material on Heat Transfer, Dryout and Critical Heat Flux of Tubes, Department of Mechanical and Aeronautical Engineering University of Pretoria South Africa, December 2020.

  12. Nithin Vinod Upot, Kazi Fazle Rabbi, Siavash Khodakarami, Jin Yao Ho, Johannes Kohler Mendizabal, and Nenad Miljkovic, Advances in Micro and Nanoengineering Surfaces for Enhancing Boiling and Condensation Heat Transfer: A Review. Nanoscale Adv., 2023, vol. 5, pp. 1232–1270.

    Article  ADS  Google Scholar 

  13. Sakhnov, A., Volodin, O.A., Pecherkin, N.I., and Pavlenko, A.N., Numerical Modelling of Liquid Film Spreading Dynamics over Smooth Vertical Surface under Isothermal Conditions, The XXXVII Siberian Thermophysical Seminar (STS37), 2021, J. Phys.: Conf. Ser., vol. 2119, 2021.

  14. Chuang-Yao Zhao, Zhuo-Liang Yao, Di Qi, Wen-Tao Ji, and Wen-Quan Tao, Hydrodynamics and Thermal Performance of Turbulent Falling Films through Horizontal Tube Bundles, Int. J. Multiphase Flow, 2023, vol. 158.

    Article  Google Scholar 

  15. Gogonin, I.I., Heat Transfer at Boiling of Liquid Film Irrigating a Horizontal Bundle of Rough Tubes, J. Phys., Conf. Ser., 2019, vol. 1369.

  16. Gogonin, I.I., The Effect of Artificial Vaporization Centers on Heat Exchange during Boiling of the Film Irrigating a Bundle of Horizontal Finned Pipes, Thermophys. Aeromech., 2021, vol. 28, no. 5, pp. 697–702.

    Article  ADS  Google Scholar 

  17. Nikolay Pecherkin, Aleksandr Pavlenko, Oleg Volodin, Andrey Kataev, and Irina Mironova, Experimental Study of Heat Transfer Enhancement in a Falling Film of R21 on an Array of Horizontal Tubes with MAO Coating, Int. Comm. Heat Mass Transfer, 2021, vol. 129, p. 105743.

    Article  Google Scholar 

  18. Heat Exchanger Design Handbook, vol. 2, Fluid Mechanics and Heat Transfer, Hemisphere Publ., 1983.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Mironova.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, A.N., Kataev, A.I. & Mironova, I.B. Evaporation and Boiling Heat Transfer at Film Irrigation of Horizontal Roughened Tubes. J. Engin. Thermophys. 32, 657–671 (2023). https://doi.org/10.1134/S181023282304001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181023282304001X

Navigation