Skip to main content
Log in

Investigation into Characteristics of Combustion of n-Heptane Sprayed by Jet of Steam or Air

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

This work investigates experimentally the thermal and environmental performance of combustion of n-heptane sprayed by superheated steam and heated air in a laboratory atmospheric burner. The one-component analogue n-heptane (formula C7H16) is often used for numerical simulation of diesel fuel combustion. The results obtained are compared with data on diesel fuel. It is shown that during combustion of n-heptane atomized by a steam jet, all the main features typical of combustion of liquid hydrocarbons with supply of steam are retained. High completeness of the fuel combustion is ensured, and the emission of nitrogen oxides and carbon monoxide is reduced in comparison with air combustion. The CO emission per combustion of 1 kg of n-heptane is about three times lower at steam atomization than that at air spraying, and NOx is about two times lower. The experimental results are topical for verification of results of numerical calculations in relation to study of combustion of liquid fuel sprayed with a jet of superheated steam (or air).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Bello, O.W., Zamani, M., Abbasi-Atibeh, E., Kostiuk, L.W., and Olfert, J.S., Comparison of Emissions From Steam- And Water-Assisted Lab-Scale Flames, Fuel, 2021, p. 302:121107; https://doi.org/ 10.1016/J.FUEL.2021.121107.

    Article  Google Scholar 

  2. Fan, Y., Wu, T., Xiao, D., Xu, H., Li, X., and Xu, M., Effect of Port Water Injection on The Characteristics of Combustion and Emissions in a Spark Ignition Direct Injection Engine, Fuel, 2021, p. 283:119271; https://doi.org/10.1016/J.FUEL.2020.119271.

    Article  Google Scholar 

  3. Mohapatra, S., Garnayak, S., Lee, B.J., Elbaz, A.M., Roberts, W.L., Dash, S.K., et al., Numerical and Chemical Kinetic Analysis to Evaluate the Effect of Steam Dilution and Pressure on Combustion of n-Dodecane in a Swirling Flow Environment, Fuel, 2021, p. 288:119710; https://doi.org/10.1016/j.fuel.2020.119710.

    Article  Google Scholar 

  4. Xue, R., Hu, C., Sethi, V., Nikolaidis, T., and Pilidis, P., Effect of Steam Addition on Gas Turbine Combustor Design and Performance, Appl. Therm. Eng., 2016, vol. 104, pp. 249–257; https://doi.org/10.1016/ J.APPLTHERMALENG.2016.05.019.

    Article  Google Scholar 

  5. Sehat, A., Ommi, F., and Saboohi, Z., Effects of Steam Addition and/or Injection on the Combustion Characteristics: A Review, Therm. Sci., 2021, vol. 25, pp. 1625–1652; https://doi.org/10.2298/TSCI191030452S.

    Article  Google Scholar 

  6. Anufriev, I.S., Review of Water/Steam Addition in Liquid-Fuel Combustion Systems for Nox Reduction: Waste-to-Energy Trends, Renew. Sustain. Energy Rev., 2021, p. 138:110665; https://doi.org/10.1016/ j.rser.2020.110665.

    Article  Google Scholar 

  7. Anufriev, I.S., Alekseenko, S.V., Kopyev, E.P., and Sharypov, O.V., Combustion of Substandard Liquid Hydrocarbons in Atmosphere Burners with Steam Gasification, J. Eng. Therm., 2019, vol. 28, pp. 324–331; https://doi.org/10.1134/S1810232819030032.

    Article  Google Scholar 

  8. Anufriev, I., Kovyev, E., Alekseenko, S., Sharypov, O., Butakov, E., Vigriyanov, M., et al., Cleaner Crude Oil Combustion During Superheated Steam Atomization, Therm. Sci., 2021, vol. 25, pp. 331–345; https:// doi.org/10.2298/tsci200509209a.

    Article  Google Scholar 

  9. Anufriev, I.S., Shadrin, E.Y., Kopyev, E.P., Alekseenko, S.V., and Sharypov, O.V., Study of Liquid Hydrocarbons Atomization by Supersonic Air or Steam Jet, Appl. Therm. Eng., 2019, p. 163:114400; https://doi.org/10.1016/j.applthermaleng.2019.114400.

    Article  Google Scholar 

  10. Anufriev, I.S., Kopyev, E.P., Sadkin, I.S., and Mukhina, M.A., Diesel and Waste Oil Combustion in a New Steam Burner with Low NOX Emission, Fuel, 2021, p. 290:120100; https://doi.org/10.1016/ j.fuel.2020.120100.

    Article  Google Scholar 

  11. Anufriev, I.S., Shadrin, E.Y., Kopyev, E.P., and Sharypov, O.V., Experimental Investigation of Size of Fuel Droplets Formed by Steam Jet Impact, Fuel, 2021, p. 303:121183; https://doi.org/10.1016/ J.FUEL.2021.121183.

    Article  Google Scholar 

  12. Anufriev, I.S., Alekseenko, S.V., Sharypov, O.V., and Kopyev, E.P., Diesel Fuel Combustion in a Direct-Flow Evaporative Burner with Superheated Steam Supply, Fuel, 2019, p. 254:115723; https://doi.org/ 10.1016/j.fuel.2019.115723.

    Article  Google Scholar 

  13. Anufriev, I.S. and Kopyev, E.P., Diesel Fuel Combustion by Spraying in a Superheated Steam Jet, Fuel Process Technol., 2019, vol. 192, pp. 154–169; https://doi.org/10.1016/j.fuproc.2019.04.027.

    Article  Google Scholar 

  14. Anufriev, I.S., Kopyev, E.P., Sadkin, I.S., and Mukhina, M.A., NOx Reduction by Steam Injection Method during Liquid Fuel and Waste Burning, Process. Saf. Environ. Prot., 2021, vol. 152, pp. 240–248; https://doi.org/10.1016/j.psep.2021.06.016.

    Article  Google Scholar 

  15. Anufriev, I.S., Vigriyanov, M.S., Alekseenko, S.V., Sharypov, O.V., Kopyev, E.P., Steam-Oil Burner, RU2684300C1, 2019; https://yandex.ru/patents/doc/RU2684300C1_20190405.

  16. Alekseenko, S.V., Anufriev, I.S,. Vigriyanov, M.S., Kopyev, E.P., Sadkin, I.S., and Sharypov, O.V., Burning of Heavy Fuel Oil in a Steam Jet in a New Burner, J. Appl. Mech. Tech. Phys., 2020, vol. 61, pp. 324–330; https://doi.org/10.1134/S0021894420030025.

    Article  ADS  Google Scholar 

  17. Kopyev, E.P., Anufriev, I.S., Mukhina, M.A., and Sadkin, I.S., Combustion of Kerosene Sprayed with a Jet of Superheated Steam, J. Phys. Conf. Ser., 2021, vol. 2119, p. 012040; https://doi.org/10.1088/1742-6596/2119/1/012040.

    Article  Google Scholar 

  18. Minakov, A.V., Anufriev, I.S., Kuznetsov, V.A., Dekterev, A.A., Kopyev, E.P., and Sharypov, O.V., Combustion of Liquid Hydrocarbon Fuel in an Evaporative Burner with Forced Supply of Superheated Steam and Air to the Reaction Zone, Fuel, 2022, p. 309:122181; https://doi.org/10.1016/J.FUEL.2021.122181.

    Article  Google Scholar 

  19. Lemaire, R., Faccinetto, A., Therssen, E., Ziskind, M., Focsa, C., and Desgroux, P., Experimental Comparison of Soot Formation in Turbulent Flames of Diesel and Surrogate Diesel Fuels, Proc. Combust. Inst., 2009, vol. 32, pp. 737–44; https://doi.org/10.1016/J.PROCI.2008.05.019.

    Article  Google Scholar 

  20. Zhang, K., Xin, Q., Mu, Z., Niu, Z., and Wang, Z., Numerical Simulation of Diesel Combustion Based on n-Heptane and Toluene, Propuls. Power Res., 2019, vol. 8, pp. 121–127; https://doi.org/10.1016/ J.JPPR.2019.01.009.

    Article  Google Scholar 

  21. Pitz, W.J. and Mueller, C.J., Recent Progress in the Development of Diesel Surrogate Fuels, Prog. Energy Combust. Sci., 2011, vol. 37, pp. 330–350; https://doi.org/10.1016/J.PECS.2010.06.004.

    Article  Google Scholar 

  22. Li, B., Liu, N., Zhao, R., Egolfopoulos, F.N., and Zhang, H., Extinction Studies of Flames of Heavy Neat Hydrocarbons and Practical Fuels, J. Propuls. Power, 2013, vol. 29, pp. 352–361; https://doi.org/10.2514/ 1.B34703.

    Article  Google Scholar 

  23. Ra, Y. and Reitz, R.D., A Combustion Model for IC Engine Combustion Simulations with Multi-Component Fuels, Combust. Flame, 2011, vol. 158, pp. 69–90; https://doi.org/10.1016/ J.COMBUSTFLAME.2010.07.019.

    Article  Google Scholar 

  24. Kolaitis, D.I. and Founti, M.A., On the Assumption of Using n-Heptane as a “Surrogate Fuel” for the Description of the Cool Flame Oxidation of Diesel Oil, Proc. Combust. Inst., 2009, vol. 32, pp. 3197–3205; https://doi.org/10.1016/J.PROCI.2008.06.073.

    Article  Google Scholar 

  25. Large-Scale Thermo-Hydrodynamic Setup for Studying the Thermal and Gas-Dynamic Characteristics of Power Plants; http://ckp-rf.ru/usu/73570/.

  26. Anufriev, I.S., Krasinsky, D.V., Shadrin, E.Y., Kopyev, E.P., and Sharypov, O.V., Investigation of the Structure of the Gas Flow from the Nozzle of a Spray-Type Burner, Thermophys. Aeromech., 2019, vol. 26, pp. 657–672; https://doi.org/10.1134/S0869864319050044.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Anufriev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anufriev, I.S., Kopyev, E.P., Mukhina, M.A. et al. Investigation into Characteristics of Combustion of n-Heptane Sprayed by Jet of Steam or Air. J. Engin. Thermophys. 31, 420–428 (2022). https://doi.org/10.1134/S1810232822030055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822030055

Navigation