Skip to main content
Log in

Incineration of Pulp and Paper Mill Waste in Supercritical Water Using Methane as a Co-Fuel

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The paper presents a research on the disposal of the toxic waste of pulp and paper mill (sludge-lignin with the empirical formula CH1.51N0.05S0.03Cl0.01O0.54through its oxidation in supercritical water-oxygen fluid, including the case of using methane as a co-fuel. The experiments were carried out with a flow reactor of original design at a pressure of 25 MPa, temperature gradient along the vertical axis (from top to bottom: 390–600°C), and variation in the flow rate of the sludge-lignin (with the addition of NaOH, 1.6 wt %), oxygen, and methane. The experiments yielded data on the content of phenols in the water and the composition of the gaseous products collected at the outlet of the reactor versus the oxygen excess ratio. From these data, as well as the time dependences of the reactor wall temperature and the power of the ohmic heaters, it follows that using distributed supply of methane to compensate for the energy for heating of the reagents is preferable as compared with local inlet of methane to the upper part of the reactor. It has been shown that the addition of methane makes it possible to reduce the oxygen excess required for complete oxidation of the organic components of sludge-lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Thompson, G., Swain, J., Kay, M., and Forster, C.F., The Treatment of Pulp and Paper Mill Effluent: A Review, Biores. Thechnol., 2001, vol. 77, pp. 275–286.

    Article  Google Scholar 

  2. Monte, M.C., Fuente, E., Blanko, A., and Negro, C., Waste Management from Pulp and Paper Production in the European Union, Waste Manag., 2009, vol. 29, pp. 293–308.

    Article  Google Scholar 

  3. Mandeep Gupta, G.K. and Shukla, P., Insights into the Resources Generation from Pulp and Paper Industry Wastes: Challenges, Perspectives and Innovations, Biores. Technol., 2020, vol. 297, p. 122496.

    Article  Google Scholar 

  4. Gasafi, E., Reinecre, M.-Y., Kruse, A., and Scheber, L., Economic Analysis of Sewage Sludge Gasification in Supercritical Water, Biomass Bioenergy, 2008, vol. 32, pp. 1085–1096.

    Article  Google Scholar 

  5. Marulanda, V. and Bolanos, G., Supercritical Water Oxidation of a Heavy PCB-Contaminated Mineral Transformer Oil: Laboratory-Scale Data and Economic Assessment, J. Supercrit. Fluids, 2010, vol. 54, pp. 258–265.

    Article  Google Scholar 

  6. Xu, D., Wang, S., Zhang, J., Tang, X., Guo, Y., and Huang, C., Supercritical Water Oxidation of a Pesticide Wastewater, Chem. Eng. Res. Design, 2015, vol. 94, pp. 396–406.

    Article  Google Scholar 

  7. Prasad Mylapilli, S.V. and Reddy, S.N., Sub and Supercritical Water Oxidation of Pharmaceutical Wastewater, J. Envir. Chem. Eng., 2019, vol. 7, p. 103165.

    Article  Google Scholar 

  8. Fedyaeva, O.N. and Vostrikov, A.A., Disposal of Hazardous Organic Substances in Supercritical Water, Russ. J. Phys. Chem. B, 2012, vol. 6, pp. 884–860.

    Article  Google Scholar 

  9. Zhang, S., Zhang, Z., Zhao, R., Gu, J., Liu, J., Örmeci, B., and Zhang, J., A Review of Challenges and Recent Progress in Supercritical Water Oxidation of Wastewater, Chem. Eng. Commun., 2017, vol. 204, pp. 265–282.

    Article  Google Scholar 

  10. Guan, Q., Wei, C., Chai, X., Ning, P., Tian, S., Gu, J., Chen, Q., and Miao, R., Energetic Analysis of Gasification of Biomass by Partial Oxidation in Supercritical Water, Chinese J. Chem. Eng., 2015, vol. 23, pp. 205–212.

    Article  Google Scholar 

  11. Ondze, F., Ferrasse, J.-H., Boutin, O., Ruiz, J.-C., and Charton, F., Process Simulation and Energetic Analysis of Different Supercritical Gasification System for the Valorisation of Biomass, J. Supercrit. Fluids, 2018, vol. 133, pp. 114–121.

    Article  Google Scholar 

  12. Darmawan, A., Ajiwibowo, M.W., Biddinika, M.K., Tokimatsu, K., and Aziz, M., Black Liquor-Based Hydrogen and Power Co-production: Combination of Supercritical Water Gasification and Syngas Chemical Looping, Appl. Energy, 2019, vol. 252, p. 113446.

    Article  Google Scholar 

  13. Blaney, C.A., Li, L., Gloyna, E.F., and Hossain, S.U., Supercritical Water Oxidation of Pulp and Paper Mill Sludge as an Alternative to Incineration, Innovat. Supercrit. Fluids, ACS Symp. Ser., 1995, vol. 608, pp. 444–455.

    Article  Google Scholar 

  14. Crain, N., Shanableh, A., and Gloyna, E., Supercritical Water Oxidation of Sludges Contaminated with Toxic Organic Chemicals, Water Sci. Technol., 2000, vol. 42, nos. 7/8, pp. 363–368.

    Article  Google Scholar 

  15. Drews, M.J., Barr, M., and Williams, M., A Kinetic Study of the SCWO of a Sulfonated Lignin Waste stream, Ind. Eng. Chem Res., 2000, vol. 39, pp. 4784–4793.

    Article  Google Scholar 

  16. Fang, Z., Xu, S.-K., and Kozinski, J.A., Flameless Oxidation of Chlorinated Wastes in Supercritical Water Using Sodium Carbonate as the Oxidation Simulant, Proceed. Combust. Inst., 2002, vol. 29, pp. 2485–2492.

    Article  Google Scholar 

  17. Veriansyah, B., Kim, J.-D., and Lee, J.-C., Destruction of Chemical Agent Simulants in a Supercritical Water Oxidation Bench-Scale Reactor, J. Hazard. Mater., 2007, vol. 147, pp. 8–14.

    Article  Google Scholar 

  18. Hodes, M., Marrone, P.A., Hong, G.T., Smith, K.A., and Tester, J.W., Salt Precipitation and Scale Control in Supercritical Water Oxidation – Part A: Fundamentals and Research, J. Supercrit. Fluids, 2004, vol. 29, pp. 265–288.

    Article  Google Scholar 

  19. Voisin, T., Erriguible, A., Ballenghien, D., Mateos, D., Kungel, A., Cancell, F., and Aymonier, C., Solubility of Inorganic Salts in Sub- and Supercritical Hydrothermal Environment: Application to SCWO Processes, J. Supercrit. Fluids, 2017, vol. 120, pp. 18–31.

    Article  Google Scholar 

  20. Muthukumaran, P. and Gupta, R.B., Sodium-Carbonate-Assisted Supercritical Water Oxidation of Chlorinated Waste, Ind. Eng. Chem. Res., 2000, vol. 39, pp. 4555–4563.

    Article  Google Scholar 

  21. Lee, G., Nunoura, T., Matsumara, Y., and Yamamoto, K., Comparison of the Effect of the Addition of NaOH on the Decomposition of 2-Chlorophenol and Phenol in Supercritical Water under Supercritical Water Oxidation Conditions, J. Supercrit. Fluids, 2002, vol. 24, pp. 239–250.

    Article  Google Scholar 

  22. Fedyaeva, O.N., Vostrikov, A.A., Artamonov, D.O., Shishkin, A.V., and Sokol, M.Y., Combustion of Sludge-Lignin in Water-Oxygen Mixture, J. Eng. Therm., 2020, vol. 29, no. 1, pp. 26–41.

    Article  Google Scholar 

  23. Fedyaeva, O.N., Vostrikov, A.A., Shishkin, A.V., Dubov, D.Y., and Sokol, M.Y., Effect of Sodium Carbonate on Supercritical Water Gasification and Oxidation of Sludge-Lignin at Continuous Counter-Feed of the Reagents, J. Supercrit. Fluids, 2020, vol. 164, p. 104933.

    Article  Google Scholar 

  24. Henrikson, J.T. and Savage, P.E., Water-Density Effects on Phenol Oxidation in Supercritical Water, AIChE J., 2003, vol. 49, pp. 718–726.

    Article  Google Scholar 

  25. Sun, Z., Takahashi, F., Odaka, Y., Fukushi, K., Oshima, Y., and Yamamoto, K., Effect of Potassium Alkalis and Sodium Alkalis on the Dechlorination of o-Chlorophenol in Supercritical Water, Chemosphere, 2007, vol. 66, pp. 151–157.

    Article  ADS  Google Scholar 

  26. Ma, J., Dong, X., Yu, Y., Zheng, B., and Zhang, M., The Effect of Alkalis on the Dechlorination of o-Chlorophenol in Supercritical Water: Molecular Dynamics Simulation and Experiment, Chem. Eng. J., 2014, vol. 241, pp. 268–272.

    Article  Google Scholar 

  27. Abad-Fernandez, N., Perez, E., and Cocero, M.J., Aromatics from Lignin through Ultrafast Reactions in Water, Green Chem., 2019, vol. 21, pp. 1351–1360.

    Article  Google Scholar 

  28. Reddy, S.N., Nanda, S., Hegde, U.G., Hicks, M.C., and Kozinski, J.A., Ignition in Hydrothermal Flames, RSC Adv., 2015, vol. 5, 36404–36422.

    Article  ADS  Google Scholar 

  29. Vostrikov, A.A., Fedyaeva, O.N., Shishkin, A.V., Sokol, M.Y., Kolobov, F.I., and Kolobov, V.I., Partial and Complete Methane Oxidation in Supercritical Water, J. Eng. Therm., 2016, vol. 25, no. 4, pp. 474–484.

    Article  Google Scholar 

  30. Lemmon, E.W., McLinden, M.O., and Freid, D.G., Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST Standard Reference Database No. 69, Linstrom, P.J. and Mallard, W.G., Eds., Gaithersburg MD: National Institute of Standards and Technology, 2018; http://webbook.nist.gov/ chemistry/fluid/.

  31. Fedyaeva, O.N., Vostrikov, A.A., Shishkin, A.V., Sokol, M.Y., Borisova, L.S., and Kashirtsev, V.A., Conversion of Brown Coal in Sub- and Supercritical Water at Cyclic Pressurization and Depressurization, Russ. J. Phys. Chem. B, 2012, vol. 6, pp. 793–803.

    Article  Google Scholar 

  32. Lurie, Y.Y., Analyticheskaya khimiya promyshlennykh stochnykh vod (Analytical Chemistry of Industrial Wastewater), Moscow: Khimia, 1984.

    Google Scholar 

  33. Powder Diffraction File, PDF-4+, Release, 2012.

  34. Perez, E. and Tuck, C.O., Quantitative Analysis of Products from Lignin Depolymerization in High-Temperature Water, Europ. Polym. J., 2018, vol. 99, pp. 38–48.

    Article  Google Scholar 

  35. Fedyaeva, O.N. and Vostrikov, A.A., Processing of Pulp and Paper Industry Wastes by Supercritical Water Gasification, Russ. J. Phys. Chem. B, 2019, vol. 13, pp. 1071–1078.

    Article  Google Scholar 

  36. Perry’s Chemical Engineers’ Handbook, 7th ed., Perry, P.H., Green, D.W., and Maloney, J.O., Eds., New York: McGraw-Hill, 1997.

  37. Purkatova, E., Ciahotny, K., Svab, M., Skoblia, S., and Beno, Z., Supercritical Water Gasification of Wastes from the Paper Industry, J. Supercrit. Fluids, 2018, vol. 135, pp. 130–136.

    Article  Google Scholar 

  38. Savage, P.E., Yu, J., Stylski, N., and Brock, E.E., Kinetics and Mechanisms of Methane Oxidation in Supercritical Water, J. Supercrit. Fluids, 1998, vol. 12, pp. 141–153.

    Article  Google Scholar 

  39. Savage, P.E., Rovira, J., Stylski, N., and Martino C.J., Oxidation Kinetics for Methane/Methanol Mixtures in Supercritical Water, J. Supercrit. Fluids, 2000, vol. 17, pp. 155–170.

    Article  Google Scholar 

  40. Fedyaeva, O.N., Vostrikov, A.A., Shishkin, A.V., and Sokol, M.Y., Transformation of Lignin under Uniform Heating. I. Gasification in a Flow of Water Vapor and Supercritical Water, J. Supercrit. Fluids, 2019, vol. 148, pp. 84–92.

    Article  Google Scholar 

  41. Halle, J.C. and Stern, K.H., The Effect of Silica on the Thermal Decomposition of Sodium Sulfate, Corrosion Sci., 1980, vol. 20, pp. 1139–1142.

    Article  Google Scholar 

  42. Fedyaeva, O.N., Vostrikov, A.A., Shishkin, A.V., and Sokol, M.Y., Transformation of Lignin under Uniform Heating. II. Combustion in a Flow of Water-Oxygen Mixture, J. Supercrit. Fluids, 2019, vol. 148, pp. 24–32.

    Article  Google Scholar 

  43. Kritzer, P., Boukis, N., and Dinjus, E., Corrosion of Alloy 625 in High-Temperature, High-Pressure Sulfate Solutions, Corrosion, 1998, vol. 54, no. 9, pp. 689–699.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Fedyaeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedyaeva, O.N., Vostrikov, A.A., Artamonov, D.O. et al. Incineration of Pulp and Paper Mill Waste in Supercritical Water Using Methane as a Co-Fuel. J. Engin. Thermophys. 30, 350–364 (2021). https://doi.org/10.1134/S1810232821030024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232821030024

Navigation