Skip to main content
Log in

Temperature Fields of Two-Liquid Droplets Moving in Preheated Medium before Micro-Explosive Fragmentation

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The paper present experimental results for temperature fields in heterogeneous droplets of liquids, freely falling in a preheated gaseous medium, before their micro-explosive fragmentation. The optical technique of Planar Laser Induced Fluorescence was applied. Unlike the known results of other authors, such fields were obtained for the first time without using holders for droplets, the latter heated in the temperature range of 900\(^{\circ}\)C to 1100\(^{\circ}\)C. The aim was to approach promising gas-vapor-droplet technologies. It is shown that for micro-explosive disintegration of a droplet containing a flammable component (by the example of Diesel and oils of two grades) and water, the necessary and sufficient condition is that the water reaches the boiling point. In this case, local superheating of the inter-component interface is sufficient. Motion intensifies the transformation of droplet and its subsequent destruction with appearance of polydisperse cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Wang, C.H., Hung, W.G., Fu, S.Y., Huang, W.C., and Law, C.K., On the Burning and Microexplosion of Collision-Generated Two-Component Droplets: Miscible Fuels, Combust. Flame, 2003, vol. 134, no. 3, pp. 289–300.

  2. Chen, R.-H., Wang, W.-C., and Chen, Y.-W., Like-Drop Collisions of Biodiesel and Emulsion Diesel, Eur. J. Mech. B, Fluids, vol. 60, pp. 62–69.

  3. Breitenbach, J., Kissing, J., Roisman, I.V., and Tropea, C., Characterization of Secondary Droplets during Thermal Atomization Regime, Exp. Therm. Fluid Sci., 2018, vol. 98, pp. 516–522.

  4. Cao, X.-K., Sun, Z.-G., Li, W.-F., Liu, H.-F., and Yu, Z.-H., A New Breakup Regime of Liquid Drops Identified in a Continuous and Uniform Air Jet Flow, Phys. Fluids, 2007, vol. 19, no. 5, 057103.

  5. Avulapati, M.M., Ganippa, L.C., Xia, J., and Megaritis, A., Puffing and Micro-Explosion of Diesel–Biodiesel–Ethanol Blends,Fuel, 2016, vol. 166, pp. 59–66.

  6. Tarlet, D., Mura, E., Josset, C., Bellettre, J., Allouis, C., and Massoli, P., Distribution of Thermal Energy of Child-Droplets Issued from an Optimal Micro-Explosion, Int. J. Heat Mass Transfer, 2014, vol. 77, pp. 1043–1054.

  7. Antonov, D.V., Piskunov, M.V., and Strizhak, P.A., Explosive Disintegration of Two-Component Drops under Intense Conductive, Convective, and Radiant Heating, Appl. Therm. Engin., 2019, vol. 152, pp. 409–419.

  8. Avedisian, C.T. and Glassmann, I., Superheating and Boiling of Water in Hydrocarbons at High Pressures, Int. J. Heat Mass Transfer, 1981, vol. 24, no. 4, pp. 695–706.

  9. Sazhin, S.S., Rybdylova, O., Crua, C., Heikal, M., Ismael, M.A., Nissar, Z., Aziz, A., and Rashid, B.A., A Simple Model for Puffing/Micro-Explosions in Water-Fuel Emulsion Droplets, Int. J. Heat Mass Transfer, 2019, vol. 131, pp. 815–821.

  10. Zeng, Y. and Chia-fon, F.L., Modeling Droplet Breakup Processes under Micro-Explosion Conditions, Proc. Combustion Inst., 2007, vol. 31, no. 2, pp. 2185–2193.

  11. Zhang, Y., Huang, Y., Huang, R., Huang, S., Ma, Y., Xu, S., and Wang, Z., A New Puffing Model for a Droplet of Butanol-Hexadecane Blends, Appl. Therm. Engin., 2018, vol. 133, pp. 633–644.

  12. Lemoine, F. and Castanet, G., Temperature and Chemical Composition of Droplets by Optical Measurement Techniques: a State-of-the-Art Review, Exp. Fluids, 2013, vol. 54, pp. 1572.

  13. Lavieille, P., Lemoine, F., Lavergne, G., Virepinte, J.F., and Lebouche, M., Temperature Measurements on Droplets in Monodisperse Stream Using Laser-Induced Fluorescence, Exp. Fluids, 2000, vol. 29, no. 5, pp. 429–437.

  14. Abram, C., Fond, B., Heyes, A.L., and Beyrau, F., High-Speed Planar Thermometry and Velocimetry Using Thermographic Phosphor Particles, Appl Phys. B, 2013, vol. 111, no. 2, pp. 155–160.

  15. Antonov, D.V., Piskunov, M.V., and Strizhak, P.A., Breakup and Explosion of Droplets of Two Immiscible Fluids and Emulsions,Int. J. Therm. Sci., 2019, vol. 142, pp. 30–41.

  16. Kuznetsov, G.V., Piskunov, M.V., and Strizhak, P.A., Evaporation, Boiling and Explosive Breakup of Heterogeneous Droplet in a High-Temperature Gas, Int. J. Heat Mass Transfer, 2016, vol. 92, pp. 360–369.

  17. Volkov, R.S., Piskunov, M.V., Kuznetsov, G.V., and Strizhak, P.A., Water Droplet with Carbon Particles Moving through High-Temperature Gases, J. Heat Transfer, 2015, vol. 138, 014502.

  18. Piskunov, M.V. and Strizhak, P.A., Difference in the Conditions and Characteristics of Evaporation of Inhomogeneous Water Drops in a High-Temperature Gaseous Medium, Tech. Phys., 2016, vol. 61, no. 9, pp. 1303–1311.

  19. Ukhanov, A., Ukhanov, D., and Shemenev, D., Dizel’noe smesevoe toplivo (Diesel Mixed Fuel), 2012.

  20. Markov, V.A., Gaivoronskii, A.I., Devyanin, S.N., and Ponomarev, E.G., Rapeseed Oil as an Alternative Fuel for Diesel,Avtomobil. Prom., 2006, vol. 2.

  21. Cen, C., Wu, H., Lee, C.-F., Fan, L., and Liu, F., Experimental Investigation on the Sputtering and Micro-Explosion of Emulsion Fuel Droplets during Impact on a Heated Surface, Int. J. Heat Mass Transfer, 2019, vol. 132, pp. 130–137.

  22. Suzuki, Y., Harada, T., Watanabe, H., Shoji, M., Matsushita, Y., Aoki, H., and Miura, T., Visualization of Aggregation Process of Dispersed Water Droplets and the Effect of Aggregation on Secondary Atomization of Emulsified Fuel Droplets, Proc. Combust. Institute, 2011, vol. 33, no. 2, pp. 2063–2070.

  23. Volkov, R.S., Vysokomornaya, O.V., Kuznetsov, G.V., and Strizhak, P.A., Experimental Investigation of the Influence of the Liquid Drop Size and Velocity on the Parameters of Drop Deformation in Air, Tech. Phys., 2015, vol. 60, no. 8, pp. 1119–1125.

  24. Akhmetbekov, E.K., Bilskii, A.V., Lozhkin, Yu.A., Markovich, D.M., Tokarev, M.P., and Tyuryushkin, A.N., Experiment Control and Data Processing System for Particle Image Velocimetry Methods ActualFlow, Vych. Met. Programm., 2006, vol. 7, pp. 79–85.

  25. Kuznetsov, G.V., Piskunov, M.V., Volkov, R.S., and Strizhak, P.A., Unsteady Temperature Fields of Evaporating Water Droplets Exposed to Conductive, Convective and Radiative Heating, Appl. Therm. Engin., 2018, vol. 131, no. 25, pp. 340–355.

  26. Volkov, R.S. and Strizhak, P.A., Planar Laser-Induced Fluorescence Diagnostics of Water Droplets Heating and Evaporation at High-Temperature, Appl. Therm. Engin., 2017, vol. 127, no. 25, pp. 141–156.

  27. Volkov, R.S., Kuznetsov, G.V., and Strizhak P.A., Application of the Planar Laser-Induced Fluorescence Method to Determine the Temperature Field of Water Droplets under Intensive Heating,J. Eng. Therm., 2017, vol. 26, no. 3, pp. 325–338.

  28. Antonov, D., Bellettre, J., Tarlet, D., Massoli, P., Vysokomornaya, O., and Piskunov, M., Impact of Holder Materials on the Heating and Explosive Breakup of Two-Component Droplets,Energies, 2018, vol. 11, 3307.

Download references

Funding

This work was supported by the Grants Council (under RF President), grant no. MD-314.2019.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Antonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, D.V., Kuznetsov, G.V., Fedorenko, R.M. et al. Temperature Fields of Two-Liquid Droplets Moving in Preheated Medium before Micro-Explosive Fragmentation. J. Engin. Thermophys. 29, 234–244 (2020). https://doi.org/10.1134/S1810232820020058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232820020058

Navigation