Skip to main content
Log in

Studies on Al2O3, CuO, and TiO2 water-based nanofluids: A comparative approach in laminar and turbulent flow

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The Prandtl number, Reynolds number and Nusselt number are functions of thermophysical properties of nanofluids, and these numbers strongly influence the convective heat transfer coefficient. The thermophysical properties vary with volumetric concentration of nanofluids. Therefore, a comprehensive analysis was performed to evaluate the effects on the performance of nanofluids due to variations of density, specific heat, thermal conductivity and viscosity, which are functions of nanoparticle volume concentration. Three metallic oxides, aluminum oxide (Al2O3), copper oxide (CuO), and titanium dioxide (TiO2), dispersed in water as the base fluid were studied. A convenient figure of merit, known as the Mouromtseff number, is used as a base of comparisonfor laminar and turbulent flows. The results indicated that the considered nanofluids can successfully replace water in specific applications for a single-phase forced convection flow in a tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ijam, A. and Saidur, R, Nanofluid as a Coolant for Electronic Devices (Cooling of ElectronicDevices), Appl. Therm. Eng., 2012, vol. 32, pp. 76–82.

    Article  Google Scholar 

  2. Delavari, V. and Hashemabadi, S.H., CFD Simulation of Heat Transfer Enhancement of Al2O3/Water and Al2O3/Ethylene Glycol Nanofluids in a Car Radiator, Appl. Therm. Eng., 2014, vol. 73, pp. 378–388.

    Article  Google Scholar 

  3. Goudarzi, K., Shojaeizadeh, E., and Nejati, F, An Experimental Investigation on the Simultaneous Effect of CuO-H2O Nanofluid and Receiver Helical Pipe on the Thermal Efficiency of a Cylindrical Solar Collector, Appl. Therm. Eng., 2014, vol. 73, pp. 1234–1241.

    Article  Google Scholar 

  4. Tiwari, A.K., Ghosh, P., and Sarkar, J, Heat Transfer and Pressure Drop Characteristics of CeO2/Water Nanofluid in Plate Heat Exchanger, Appl. Therm. Eng., 2013, vol. 57, pp. 24–32.

    Article  Google Scholar 

  5. Mohammadian, S.K. and Zhang, Y, Analysis of Nanofluid Effects on Thermoelectric Cooling by Micro-Pin-Fin heat Exchangers, Appl. Therm. Eng., 2014, vol. 70, pp. 282–290.

    Article  Google Scholar 

  6. Ho, C.J. and Chen, W.C, An Experimental Study on Thermal Performance of Al2O3/Water Nanofluid in a Minichannel Heat Sink, Appl. Therm. Eng., 2013, vol. 50, pp. 516–522.

    Article  Google Scholar 

  7. Kang, S.W., Wei, W.C., Tsai, S.H., and Yang, S.Y, Experimental Investigation of Silver Nanofluid on Heat Pipe Thermal Performance, Appl. Therm. Eng., 2006, vol. 26, pp. 2377–2382.

    Article  Google Scholar 

  8. Firouzfar, E., Soltanieh, M., Noie, S.H., and Saidi, S.H, Energy Saving inHVAC SystemsUsing Nanofluid, Appl. Therm. Eng., 2011, vol. 31, pp. 1543–1545.

    Article  Google Scholar 

  9. Doganay, S. and Turgut, A, Enhanced Effectiveness of Nanofluid Based Natural Circulation Miniloop, Appl. Therm. Eng., 2015, vol. 75, pp. 669–676.

    Article  Google Scholar 

  10. Murshed, S.M.S., Leong, K.C., and Yang, C, Thermophysical and Electrokinetic Properties of Nanofluids— ACritical Review, Appl. Therm. Eng., 2008, vol. 28, pp. 2109–2125.

    Article  Google Scholar 

  11. Nnanna, A.G.A., Rutherford, W., Elomar, W., and Sankowski, B, Assessment of Thermoelectric Module with Nanofluid Heat Exchanger, Appl. Therm. Eng., 2009, vol. 29, pp. 491–500.

    Article  Google Scholar 

  12. Akbarinia, A. and Behzadmehr, A, Numerical Study of Laminar Mixed Convection of a Nanofluid in Horizontal Curved Tubes, Appl. Therm. Eng., 2007, vol. 27, pp. 1327–1337.

    Article  Google Scholar 

  13. Jang, S.P. and Choi, S.U.S, Cooling Performance of a Microchannel Heat Sink with Nanofluids, Appl. Therm. Eng., 2006, vol. 26, pp. 2457–2463.

    Article  Google Scholar 

  14. Bianco, V., Chiacchio, F., Manca, O., and Nardini, S, Numerical Investigation of Nanofluids Forced Convection in Circular Tubes, Appl. Therm. Eng., 2009, vol. 29, pp. 3632–3642.

    Article  Google Scholar 

  15. Tahir, S. and Mital, M, Numerical Investigation of Laminar Nanofluid Developing Flow and Heat Transfer in a Circular Channel, Appl. Therm. Eng., 2012, vol. 39, pp. 8–14.

    Article  Google Scholar 

  16. Choi, S.U.S, Nanofluids: From Vision to Reality through Research, Trans. ASME, J. Heat Transfer, 2009, vol. 131, pap. no. 033106.

    Article  Google Scholar 

  17. Yu, W., France, D.M., Routbort, J.L., and Choi, S.U.S, Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Eng., 2009, vol. 29, pp. 432–460.

    Article  ADS  Google Scholar 

  18. Maxwell, J.C., A Treatise on Electricity and Magnetism, Oxford, UK: Clarendon, 1873.

    MATH  Google Scholar 

  19. Buongiorno, J., A Benchmark Study on the Thermal Conductivity of Nanofluids, J. Appl. Phys., 2009, vol. 106, pap. no. 094312.

  20. Jang, S.P. and Choi, S.U.S, Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids, Appl. Phys. Lett., 2004, vol. 84, pp. 4316–4318.

    Article  ADS  Google Scholar 

  21. Prasher, R., Bhattacharya, P., and Phelan, P.E., Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids, Trans. ASME J. Heat Transfer, 2006, vol. 128, pp. 588–595.

    Article  Google Scholar 

  22. Prasher, R., Phelan, P.E., and Bhattacharya, P, Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid), Nano Lett., 2006, vol. 6, pp. 1529–1534.

    Article  ADS  Google Scholar 

  23. Chopkar, M., Sudarshan, S., Das, P.K., and Manna, I, Effect of Particle Size on Thermal Conductivity of Nanofluid, Metal. Mater. Trans. A, Phys.Metal. Mater. Sci., 2008, vol. 39, pp. 1535–1542.

    Article  ADS  Google Scholar 

  24. Timofeeva, E.V., Routbort, J.L., and Singh, D, Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids, J. Appl. Phys., 2009, vol. 106, pap. no. 014304.

  25. Yu, W., France, D.M., Timofeeva, E.V., Singh, D., and Routbort, J.L, Thermophysical Property-Related Comparison Criteria for Nanofluid Heat Transfer Enhancement in Turbulent Flow, Appl. Phys. Lett., 2010, vol. 96, pp. 1–3.

    Google Scholar 

  26. Yu, W., France, D.M., Timofeeva, E.V., Singh, D., and Routbort, J.L, Comparative Review of Turbulent Heat Transfer of Nanofluids, Int. J. Heat Mass Transfer, 2012, vol. 55, pp. 5380–5396.

    Article  Google Scholar 

  27. Simons, R.E, Comparing Heat Transfer Rates of Liquid Coolants Using the Mouromtseff Number, Electronic Cool., 2006, vol. 12, no. 2.

  28. Vajjha, R.S. and Das, D.K., A Review and Analysis on Influence of Temperature and Concentration of Nanofluids on Thermophysical Properties, Heat Transfer and Pumping Power, Int. J. Heat Mass Transfer, 2012, vol. 55, pp. 4063–4078.

    Article  Google Scholar 

  29. Eiamsa-ard, S. and Kiatkittipong, K, Heat Transfer Enhancement by Multiple Twisted Tape Inserts and TiO2/Water Nanofluid, Appl. Therm. Eng., 2014, vol. 70, pp. 896–924.

    Article  Google Scholar 

  30. Ahmed, M. and Eslamian, M, Laminar Forced Convection of a Nanofluid in a Microchannel: Effect of Flow Inertia and External Forces on Heat Transfer and Fluid Flow Characteristics, Appl. Therm. Eng., 2015, vol. 78, pp. 326–338.

    Article  Google Scholar 

  31. Sarkar, J., A Critical Review on Convective Heat Transfer Correlations of Nanofluids, Renew. Sustain. Energy Rev., 2011, vol. 15, no. 6, pp. 3271–3277.

    Article  Google Scholar 

  32. Buongiorno, J, Convective Transport in Nanofluids, J. Heat Transfer, 2006, vol. 128, pp. 240–250.

    Article  Google Scholar 

  33. Hamilton, R.L. and Crosser, O.K, Thermal Conductivity of Heterogeneous Two-Component System, I and EC Fund., 1962, vol. 1, pp. 187–191.

    Article  Google Scholar 

  34. Zhang, X., Gu, H., and Fujii, M, Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles, J. Appl. Phys., 2006, vol. 100, no. 4, pap. no. 044325, pp. 1–5.

    Google Scholar 

  35. Brinkman, H., The Viscosity of Concentrated Suspensions and Solutions, J. Chem. Phys., 1952, vol. 20, p. 571.

  36. Minea, A.A, Simulation of Nanofluids Turbulent Forced Convection at High Reynolds Number: A Comparison Study of Thermophysical Properties Influence on Heat Transfer Enhancement, Flow Turb. Combust., 2015, vol. 94, pp. 555–575.

    Article  Google Scholar 

  37. Launder, B.E. and Spalding, D.B., MathematicalModels of Turbulence, New York: Academic Press, 1972.

    MATH  Google Scholar 

  38. Fluent 13.1 User Guide, Fluent Inc.

  39. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, McGraw Hill, 1980.

    MATH  Google Scholar 

  40. Hojjat, M., Etemad, S.Gh., Bagheri, R., and Thibault, J, Convective Heat Transfer of Non-Newtonian Nanofluids through a Uniformly Heated Circular Tube, Int. J. Therm. Sci., 2011, vol. 50, pp. 525–531.

    Article  Google Scholar 

  41. Hojjat, M., Etemad, S.Gh., Bagheri, R., and Thibault, J, Turbulent Forced Convection Heat Transfer of Non-Newtonian Nanofluids, Exp. Therm. Fluid Sci., 2011, vol. 35, pp. 1351–1356.

    Article  Google Scholar 

  42. Corcione, M., Cianfrini, M., and Quintino, A, Heat Transfer of Nanofluids in Turbulent Pipe Flow, Int. J. Therm. Sci., 2012, vol. 56, pp. 58–69.

    Article  Google Scholar 

  43. Bianco, V., Manca, O., and Nardini, S, Performance Analysis of Turbulent Convection Heat Transfer of Al2O3 Water-Nanofluid in Circular Tubes at Constant Wall Temperature, Energy, 2014, vol. 77, pp. 403–413.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Minea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minea, A.A., Moldoveanu, M.G. Studies on Al2O3, CuO, and TiO2 water-based nanofluids: A comparative approach in laminar and turbulent flow. J. Engin. Thermophys. 26, 291–301 (2017). https://doi.org/10.1134/S1810232817020114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232817020114

Navigation