Skip to main content
Log in

Enzymatic antioxidant system of endotheliocytes

  • Biochemistry, Biophysics, and Molecular Biology
  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

It is shown that endothelial cells from human umbilical vein have a reduced activity and gene expression of the “classic” antioxidant enzymes (Cu,Zn-superoxide dismutase, catalase, and Se-containing glutathione peroxidase). At the same time, a high expression level of peroxiredoxin genes was identified in the same endothelial cells, which obviously indicates the predominant involvement of these enzymes in protecting the endothelium from the damaging effect of free radical peroxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lankin, V.Z., The enzymatic systems in the regulation of free radical lipid peroxidation, in Free Radicals, Nitric Oxide, and Inflammation: Molecular, Biochemical, and Clinical Aspects, NATO Science Series, Amsterdam: IOS Press, 2003, vol. 344, pp. 8–23.

    CAS  Google Scholar 

  2. Lankin, V.Z., Antonovsky, V.L., and Tikhaze, A.K., Regulation of free radical lipoperoxidation and organic peroxides metabolism during normal station and pathologies, in Peroxides at the Beginning of the Third Millennium, New York: Nova Sci. Publ., Inc., 2004, pp. 85–111.

    Google Scholar 

  3. Karplus, P.A., A primer on peroxiredoxin biochemistry, Free Radic. Biol. Med., 2015, vol. 80, no. 3, pp. 183–190.

    Article  CAS  PubMed  Google Scholar 

  4. Manevich, Y., Shuvaeva, T., Dodia, C., Kazi, A., Feinstein, S.I., and Fisher, A.B., Binding of peroxiredoxin 6 to substrate determines differential phospholipid hydroperoxide peroxidase and phospholipase A(2) activities, Arch. Biochem. Biophys., 2009, vol. 485, no. 2, pp. 139–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peshenko, I.V. and Shichi, H., Oxidation of active center cysteine of bovine 1-Cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite, Free Radic. Biol. Med., 2001, vol. 31, no. 3, pp. 292–303.

    Article  CAS  PubMed  Google Scholar 

  6. Sies, H., Sharov, V.S., Klotz, L.O., and Briviba, K., Glutathione peroxidase protects against peroxynitritemediated oxidations, J. Biol. Chem., 1997, vol. 272, no. 44, pp. 27812–27817.

    Article  CAS  PubMed  Google Scholar 

  7. Lankin, V.Z., Vandyshev, D.V., Tikhaze, A.K., Kosykh, V.A., and Pomoinetskii, V.D., Effect of hyperoxia on the activity of superoxide dismutase and glutathione peroxidase in mouse tissues, Dokl. Akad. Nauk, 1981, vol. 259, no. 1, pp. 229–231.

    CAS  Google Scholar 

  8. Antonov, A.S., Nikolaeva, M.A., Klueva, T.S., Romanov, Y.A., Babaev, V.R., Bystrevskaya, V.B., Perov, N.A., Repin, V.S., and Smirnov, V.N., Primary culture of endothelial cells from atherosclerotic human aorta. Part 1. Identification, morphological and ultrastructural characteristics of two endothelial cell subpopulations, Atherosclerosis, 1986, vol. 59, no. 1, pp. 1–19.

    CAS  PubMed  Google Scholar 

  9. Lankin, V., Konovalova, G., Tikhaze, A., Shumaev, K., Kumskova, E., and Viigimaa, M., The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes, Mol. Cell. Biochem., 2014, vol. 395, nos. 1/2, pp. 241–252.

    Article  CAS  PubMed  Google Scholar 

  10. Kang, S.W., Baines, I.C., and Rhee, S.G., Characterization of a mammalian peroxiredoxin that contains one conserved cysteine, J. Biol. Chem., 1998, vol. 73, no. 11, pp. 303–6311.

    Google Scholar 

  11. Schmittgen, T.D. and Livak, K.J., Analyzing real-time pcr data by the comparative C(T) method, Nat. Protoc., 2008, vol. 3, no. 6, pp. 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  12. Lankin, V.Z., Konovalova, G.G., Tikhaze, A.K., Kumskova, E.M., and Shumaev, K.B., Aldehydedependent modification of low density lipoproteins, in Handbook of Lipoprotein Research, New York: NOVA Sci. Publ., 2010, pp. 85–107.

  13. Shen, X.C., Tao, L., Li, W.K., Zhang, Y.Y., Luo, H., and Xia, Y.Y., Evidence-based antioxidant activity of the essential oil from Fructus A. Zerumbet on cultured human umbilical vein endothelial cells’ injury induced by ox-LDL, BMC Complement. Altern. Med., 2012. doi doi 10.1186/1472-6882-12-174

    Google Scholar 

  14. Li, D., Saldeen, T., Romeo, F., and Mehta, J.L., Oxidized LDL upregulates angiotensin II type 1 receptor expression in cultured human coronary artery endothelial cells: the potential role of transcription factor NFkappaB, Circulation, 2000, vol. 102, no. 16, pp. 1970–1976.

    Article  CAS  PubMed  Google Scholar 

  15. Apostolov, E.O., Basnakian, A.G., Yin, X., Ok, E., and Shah, S.V., Modified LDLs induce proliferation-mediated death of human vascular endothelial cells through MAPK pathway, Amer. J. Physiol. Heart. Circ. Physiol., 2007, vol. 292, no. 4, pp. H1836–H1846.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Z. Lankin.

Additional information

Original Russian Text © M.G. Sharapov, R.G. Goncharov, A.E. Gordeeva, V.I. Novoselov, O.A. Antonova, A.K. Tikhaze, V.Z. Lankin, 2016, published in Doklady Akademii Nauk, 2016, Vol. 471, No. 2, pp. 241–244.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharapov, M.G., Goncharov, R.G., Gordeeva, A.E. et al. Enzymatic antioxidant system of endotheliocytes. Dokl Biochem Biophys 471, 410–412 (2016). https://doi.org/10.1134/S1607672916060090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1607672916060090

Navigation