Skip to main content
Log in

Dynamics of Two Vortex Rings in a Bose – Einstein Condensate

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we consider the dynamics of two interacting point vortex rings in a Bose – Einstein condensate. The existence of an invariant manifold corresponding to vortex rings is proved. Equations of motion on this invariant manifold are obtained for an arbitrary number of rings from an arbitrary number of vortices. A detailed analysis is made of the case of two vortex rings each of which consists of two point vortices where all vortices have same topological charge. For this case, partial solutions are found and a complete bifurcation analysis is carried out. It is shown that, depending on the parameters of the Bose – Einstein condensate, there are three different types of bifurcation diagrams. For each type, typical phase portraits are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Helmholtz, H., Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., 1858, vol. 55, pp. 25–55.

    MathSciNet  Google Scholar 

  2. Kirchhoff, G., Vorlesungen über mathematische Physik: Vol. 1. Mechanik, Leipzig: Teubner, 1876.

    MATH  Google Scholar 

  3. Greenhill, A. G., Plane Vortex Motion, Quart. J. Pure Appl. Math., 1877/78, vol. 15, no. 58, pp. 10–27.

    MATH  Google Scholar 

  4. Lewis, T. C., Some Cases of Vortex Motion, Messenger of Math., 1879, vol. 9, pp. 93–95.

    Google Scholar 

  5. Gromeka, I. S., On Vortex Motions of a Liquid on a Sphere, Uchen. Zap. Imp. Kazan. Univ., 1885, no. 3, pp. 202–236 (Russian).

    Google Scholar 

  6. Zermelo, E., Hydrodynamische Untersuchungen über die Wirbelbewegungen in einer Kugelfläche, Z. Math. Phys., 1902, vol. 47, pp. 201–237.

    MATH  Google Scholar 

  7. Bogomolov, V. A., Dynamics of the Vorticity on a Sphere, Fluid Dynam., 1977, vol. 12, no. 6, pp. 863–870; see also: Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 1977, no. 6, pp. 57-65.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogomolov, V. A., On Two-Dimensional Hydrodynamics of a Sphere, Izv. Atmos. Ocean. Phys., 1979, vol. 15, no. 1, pp. 18–22; see also: Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana, 1979, vol. 15, no. 1, pp. 29-35.

    Google Scholar 

  9. Dritschel, D. G. and Boatto, S., The Motion of Point Vortices on Closed Surfaces, Proc. A, 2015, vol. 471, no. 2176, 20140890, 25 pp.

    MathSciNet  MATH  Google Scholar 

  10. Borisov, A. V. and Mamaev, I. S., Mathematical Methods in the Dynamics of Vortex Structures, Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).

    MATH  Google Scholar 

  11. Thomson, W., Floating Magnets, Nature, 1878, vol. 18, pp. 13–14.

    Article  Google Scholar 

  12. Morikawa, G. K. and Swenson, E. V., Interacting Motion of Rectilinear Geostrophic Vortices, Phys. Fluids, 1971, vol. 14, no. 6, pp. 1058–1073.

    Article  Google Scholar 

  13. Gryanik, V. M., Dynamics of Singular Geostrophical Vortices in a \(2\)-Level Model of the Atmosphere (Ocean), Izv. Atmos. Ocean Phys., 1983, vol. 19, no. 3, pp. 171–179; see also: Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana, 1983, vol. 19, no. 3, pp. 227-240.

    MathSciNet  Google Scholar 

  14. Hogg, N. G. and Stommel, H. M., Hetonic Explosions: The Breakup and Spread of Warm Pools As Explained by Baroclinic Point Vortices, J. Atmos. Sci., 1985, vol. 42, no. 14, pp. 1465–1476.

    Article  Google Scholar 

  15. Sokolovskiy, M. A. and Verron, J., Dynamics of Vortex Structures in a Stratified Rotating Fluid, Atmos. Oceanogr. Sci. Libr., vol. 47, Cham: Springer, 2014.

    MATH  Google Scholar 

  16. Sokolovskiy, M. A., Koshel, K. V., Dritschel, D. G., and Reinaud, J. N., \(N\)-Symmetric Interaction of \(N\) Hetons: Part 1. Analysis of the Case \(N=2\), Phys. Fluids, 2020, vol. 32, no. 9, 096601, 17 pp.

    Article  Google Scholar 

  17. Fetter, A. L. and Svidzinsky, A. A., Vortices in a Trapped Dilute Bose – Einstein Condensate, J. Phys. Condens. Matter, 2001, vol. 13, no. 12, R135–R194.

    Article  MATH  Google Scholar 

  18. Middelkamp, S., Kevrekidis, P. G., Frantzeskakis, D. J., Carretero-González, R., and Schmelcher, P., Bifurcations, Stability, and Dynamics of Multiple Matter-Wave Vortex States, Phys. Rev. A, 2010, vol. 82, no. 1, 013646, 15 pp.

    Article  Google Scholar 

  19. Kevrekidis, P. G., Carretero-González, R., Frantzeskakis, D. J., and Kevrekidis, I G., Vortices in Bose – Einstein Condensates: Some Recent Developments, Modern Phys. Lett. B, 2004, vol. 18, no. 30, pp. 1481–1505.

    Article  MATH  Google Scholar 

  20. Fetter, A. L., Rotating Trapped Bose – Einstein Condensates, Rev. Mod. Phys., 2009, vol. 81, no. 2, pp. 647–692.

    Article  Google Scholar 

  21. Gröbli, W., Spezielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden, Zürich: Zürcher und Furrer, 1877; see also: Vierteljahresschr. Naturforsch. Ges. Zürich, 1877, vol. 22, pp. 37–81, 129–165.

    MATH  Google Scholar 

  22. Goryachev, D. N., On Some Cases of Motion of Rectilinear Parallel Vortex Filaments, Magister Dissertation, Moscow: Imp. Moscow Univ., 1898, 106 pp. (Russian).

  23. Borisov, A. V., Kilin, A. A., and Mamaev, I. S., A New Integrable Problem of Motion of Point Vortices on the Sphere, Nelin. Dinam., 2007, vol. 3, no. 2, pp. 211–223 (Russian).

    Article  Google Scholar 

  24. Stremler, M. A., Salmanzadeh, A., Basu, S., and Williamson, Ch. H. K., A Mathematical Model of \(2\)P and \(2\)C Vortex Wakes, J. Fluid Struct., 2011, vol. 27, no. 5–6, pp. 774–783.

    Article  Google Scholar 

  25. García-Azpeitia, C. and García-Naranjo, L. C., Platonic Solids and Symmetric Solutions of the \(N\)-Vortex Problem on the Sphere, J. Nonlinear Sci., 2022, vol. 32, no. 3, Paper No. 39, 56 pp.

    Article  MathSciNet  MATH  Google Scholar 

  26. Havelock, T. H., The Stability of Motion of Rectilinear Vortices in Ring Formation, Philos. Mag., 1931, vol. 11, no. 70, pp. 617–633.

    Article  MATH  Google Scholar 

  27. Kurakin, L. G. and Yudovich, V. I., On the Nonlinear Stability of the Steady Rotation of a Regular Vortex Polygon, Dokl. Phys., 2002, vol. 47, no. 6, pp. 465–470; see also: Dokl. Akad. Nauk, 2002, vol. 384, no. 4, pp. 476-482.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kurakin, L. G. and Yudovich, V. I., The Stability of Stationary Rotation of a Regular Vortex Polygon, Chaos, 2002, vol. 12, no. 3, pp. 574–595.

    Article  MathSciNet  MATH  Google Scholar 

  29. Kurakin, L. G., On the Stability of Thomson’s Vortex Configurations inside a Circular Domain, Regul. Chaotic Dyn., 2010, vol. 15, no. 1, pp. 40–58.

    Article  MathSciNet  MATH  Google Scholar 

  30. Kurakin, L. G. and Ostrovskaya, I. V., Stability of the Thomson Vortex Polygon with Evenly Many Vortices outside a Circular Domain, Siberian Math. J., 2010, vol. 51, no. 3, pp. 463–474; see also: Sibirsk. Mat. Zh., 2010, vol. 51, no. 3, pp. 584-598.

    Article  MathSciNet  MATH  Google Scholar 

  31. Kilin, A. A., Borisov, A. V., and Mamaev, I. S., The Dynamics of Point Vortices Inside and Outside a Circular Domain, in Basic and Applied Problems of the Theory of Vortices, A. V. Borisov, I. S. Mamaev, M. A. Sokolovskiy (Eds.), Izhevsk: R&C Dynamics, Institute of Computer Science, 2003, pp. 414–440 (Russian).

    Google Scholar 

  32. Bogomolov, V. A., Model of Oscillations of the Centers of Action of the Atmosphere, Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana, 1979, vol. 15, no. 3, pp. 243–249 (Russian).

    Google Scholar 

  33. Borisov, A. V. and Kilin, A. A., Stability of Thomson’s Configurations of Vortices on a Sphere, Regul. Chaotic Dyn., 2000, vol. 5, no. 2, pp. 189–200.

    Article  MathSciNet  MATH  Google Scholar 

  34. Stewart, H. J., Periodic Properties of the Semi-Permanent Atmospheric Pressure Systems, Quart. Appl. Math., 1943, vol. 1, pp. 262–267.

    Article  MathSciNet  MATH  Google Scholar 

  35. Stewart, H. J., Hydrodynamic Problems Arising from the Investigation of the Transverse Circulation in the Atmosphere, Bull. Amer. Math. Soc., 1945, vol. 51, pp. 781–799.

    Article  MathSciNet  MATH  Google Scholar 

  36. Kizner, Z., On the Stability of Two-Layer Geostrophic Point-Vortex Multipoles, Phys. Fluids, 2014, vol. 26, no. 4, 046602, 18 pp.

    Article  MATH  Google Scholar 

  37. Kurakin, L. G., Ostrovskaya, I. V., and Sokolovskiy, M. A., Stability of Discrete Vortex Multipoles in Homogeneous and Two-Layer Rotating Fluid, Dokl. Phys., 2015, vol. 60, no. 5, pp. 217–223; see also: Dokl. Akad. Nauk, 2015, vol. 462, no. 2, pp. 161-167.

    Article  Google Scholar 

  38. Kurakin, L. G., Ostrovskaya, I. V., and Sokolovskiy, M. A., On the Stability of Discrete Tripole, Quadrupole, Thomson’ Vortex Triangle and Square in a Two-Layer/Homogeneous Rotating Fluid, Regul. Chaotic Dyn., 2016, vol. 21, no. 3, pp. 291–334.

    Article  MathSciNet  MATH  Google Scholar 

  39. Kurakin, L. G., Lysenko, I. A., Ostrovskaya, I. V., and Sokolovskiy, M. A., On Stability of the Thomson’s Vortex \(N\)-Gon in the Geostrophic Model of the Point Vortices in Two-Layer Fluid, J. Nonlinear Sci., 2019, vol. 29, no. 4, pp. 1659–1700.

    Article  MathSciNet  MATH  Google Scholar 

  40. Artemova, E. M. and Kilin, A. A., Nonlinear Stability of Regular Vortex Polygons in a Bose – Einstein Condensate, Phys. Fluids, 2021, vol. 33, no. 12, 127105, 7 pp.

    Article  Google Scholar 

  41. Kurakin, L. G. and Ostrovskaya, I. V., On the Stability of Thomson’s Vortex \(N\)-Gon and a Vortex Tripole/Quadrupole in Geostrophic Models of Bessel Vortices and in a Two-Layer Rotating Fluid: A Review, Russian J. Nonlinear Dyn., 2019, vol. 15, no. 4, pp. 533–542.

    MathSciNet  MATH  Google Scholar 

  42. Aref, H., Point Vortex Motions with a Center of Symmetry, Phys. Fluids, 1982, vol. 25, no. 12, pp. 2183–2187.

    Article  MathSciNet  MATH  Google Scholar 

  43. Koiller, J., Pinto de Carvalho, S., Rodrigues da Silva, R., and Gonçalves de Oliveira, L. C., On Aref’s Vortex Motions with a Symmetry Center, Phys. D, 1985, vol. 16, no. 1, pp. 27–61.

    Article  MathSciNet  MATH  Google Scholar 

  44. Borisov, A. V. and Mamaev, I. S., Dynamics of Two Vortex Rings on a Sphere, Nelin. Dinam., 2006, vol. 2, no. 2, pp. 181–192 (Russian).

    Article  Google Scholar 

  45. Lewis, D. and Ratiu, T., Rotating \(n\)-Gon/\(kn\)-Gon Vortex Configurations, J. Nonlinear Sci., 1996, vol. 6, no. 5, pp. 385–414.

    Article  MathSciNet  MATH  Google Scholar 

  46. Middelkamp, S., Torres, P. J., Kevrekidis, P. G., Frantzeskakis, D. J., Carretero-González, R., Schmelcher, P., Freilich, D. V., and Hall, D. S., Guiding-Center Dynamics of Vortex Dipoles in Bose – Einstein Condensates, Phys. Rev. A, 2011, vol. 84, no. 1, 011605, 4 pp.

    Article  Google Scholar 

  47. Torres, P. J., Kevrekidis, P. G., Frantzeskakis, D. J., Carretero-González, R., Schmelcher, P., and Hall, D. S., Dynamics of Vortex Dipoles in Confined Bose – Einstein Condensates, Phys. Lett. A, 2011, vol. 375, no. 33, pp. 3044–3050.

    Article  Google Scholar 

  48. Ryabov, P. E. and Sokolov, S. V., Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate, Russian J. Nonlinear Dyn., 2019, vol. 15, no. 1, pp. 59–66.

    MathSciNet  MATH  Google Scholar 

  49. Koukouloyannis, V., Voyatzis, G., and Kevrekidis, P. G., Dynamics of Three Noncorotating Vortices in Bose – Einstein Condensates, Phys. Rev. E, 2014, vol. 89, no. 4, 042905, 14 pp.

    Article  Google Scholar 

  50. Kyriakopoulos, N., Koukouloyannis, V., Skokos, Ch., and Kevrekidis, P. G., Chaotic Behavior of Three Interacting Vortices in a Confined Bose – Einstein Condensate, Chaos, 2014, vol. 24, no. 2, 024410, 12 pp.

    Article  MathSciNet  Google Scholar 

  51. Aref, H., Point Vortex Motions with a Center of Symmetry, Phys. Fluids, 1982, vol. 25, no. 12, pp. 2183–2187.

    Article  MathSciNet  MATH  Google Scholar 

  52. Arnol’d, V. I., Afraimovich, V. S., Ilyashenko, Yu. S., and Shilnikov, L. P., Bifurcation Theory, in Dynamical Systems 5, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., vol. 5, Moscow: VINITI, 1986, pp. 5–218 (Russian).

    Google Scholar 

  53. Bizyaev, I., Bolsinov, A., Borisov, A., and Mamaev, I., Topology and Bifurcations in Nonholonomic Mechanics, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2015, vol. 25, no. 10, 1530028, 21 pp.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of A. A. Kilin (Sections 1–5) was performed at the Ural Mathematical Center (Agreement No. 075-02-2022-889). This work of E. M. Artemova (Section 6) was supported by the framework of the state assignment or the Ministry of Science and Higher Education (No. FEWS-2020-0009) and was supported in part by the Moebius Contest Foundation for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elizaveta M. Artemova or Alexander A. Kilin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

76B47, 37J20, 34C23, 34C45

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemova, E.M., Kilin, A.A. Dynamics of Two Vortex Rings in a Bose – Einstein Condensate. Regul. Chaot. Dyn. 27, 713–732 (2022). https://doi.org/10.1134/S1560354722060089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354722060089

Keywords

Navigation