Skip to main content
Log in

Stability and Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the problem of a spherical robot having an axisymmetric pendulum drive and rolling without slipping on a vibrating plane. It is shown that this system admits partial solutions (steady rotations) for which the pendulum rotates about its vertical symmetry axis. Special attention is given to problems of stability and stabilization of these solutions. An analysis of the constraint reaction is performed, and parameter regions are identified in which a stabilization of the spherical robot is possible without it losing contact with the plane. It is shown that the partial solutions can be stabilized by varying the angular velocity of rotation of the pendulum about its symmetry axis, and that the rotation of the pendulum is a necessary condition for stabilization without the robot losing contact with the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In this section, by dimensionless momentum we mean an angular momentum that is nondimensionalized in length and mass and has the dimension of the angular velocity.

  2. Symbol \(\otimes\) denotes the tensor multiplication of vectors which associates the matrix \({\bf A}\) with components \(A_{i,j}=a_{i}b_{j}\) to the pair of vectors \(\boldsymbol{a},\boldsymbol{b}\).

  3. Here and below, by dimensionless variables we mean variables completely nondimensionalized in length, mass and time.

References

  1. Alves, J. and Dias, J., Design and Control of a Spherical Mobile Robot, J. Syst. Control Eng., 2003, vol. 217, pp. 457–467.

    Google Scholar 

  2. Armour, R. H. and Vincent, J. F., Rolling in Nature and Robotics: A Review, J. Bionic Eng., 2006, vol. 3, no. 4, pp. 195–208.

    Google Scholar 

  3. Arnol’d, V. I., Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math., vol. 60, New York: Springer, 2013.

    Google Scholar 

  4. Arnol’d, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed., Encyclopaedia Math. Sci., vol. 3, Berlin: Springer, 2006.

    Google Scholar 

  5. Artusi, M., Potz, M., Aristizabal, J., Menon, C., Cocuzza, S., and Debei, S., Electroactive Elastomeric Actuators for the Implementation of a Deformable Spherical Rover, IEEE/ASME Trans. Mechatronics, 2011, vol. 16, no. 1, pp. 50–57.

    Google Scholar 

  6. Awrejcewicz, J. and Kudra, G., Mathematical Modelling and Simulation of the Bifurcational Wobblestone Dynamics, Discontinuity, Nonlinearity, Complex., 2014, vol. 3, no. 2, pp. 123–132.

    Google Scholar 

  7. Awrejcewicz, J. and Kudra, G., Dynamics of a Wobblestone Lying on Vibrating Platform Modified by Magnetic Interactions, Procedia IUTAM, 2017, vol. 22, pp. 229–236.

    Google Scholar 

  8. Bardin, B. S. and Markeyev, A. P., The Stability of the Equilibrium of a Pendulum for Vertical Oscillations of the Point of Suspension, J. Appl. Math. Mech., 1995, vol. 59, no. 6, pp. 879–886; see also: Prikl. Mat. Mekh., 1995, vol. 59, no. 6, pp. 922-929.

    MathSciNet  MATH  Google Scholar 

  9. Bhattacharjee, S., Resonances in the Heavy Symmetrical Top with Vibrating Pivot, Eur. Phys. J. Plus, 2013, vol. 128, no. 2, Art.No. 17, 11 pp.

    Google Scholar 

  10. Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., The Dynamics of Nonholonomic Systems Consisting of a Spherical Shell with a Moving Rigid Body Inside, Regul. Chaotic Dyn., 2014, vol. 19, no. 2, pp. 198–213.

    MathSciNet  MATH  Google Scholar 

  11. Blekhman, I. I., Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications, River Edge, N.J.: World Sci., 2000.

    Google Scholar 

  12. Borisov, A. V., Kilin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., Stabilization of the Motion of a Spherical Robot Using Feedbacks, Appl. Math. Model., 2019, vol. 69, pp. 583–592.

    MathSciNet  MATH  Google Scholar 

  13. Borisov, A. V. and Ivanov, A. P., Dynamics of the Tippe Top on a Vibrating Base, Regul. Chaotic Dyn., 2020, vol. 25, no. 6, pp. 707–715.

    MathSciNet  Google Scholar 

  14. Borisov, A. V., Ivanova, T. B., Karavaev, Yu. L., and Mamaev, I. S., Theoretical and Experimental Investigations of the Rolling of a Ball on a Rotating Plane (Turntable), Eur. J. Phys., 2018, vol. 39, no. 6, 065001, 13 pp.

    MATH  Google Scholar 

  15. Borisov, A. V., Ivanova, T. B., Kilin, A. A., and Mamaev, I. S., Nonholonomic Rolling of a Ball on the Surface of a Rotating Cone, Nonlinear Dynam., 2019, vol. 97, no. 2, pp. 1635–1648.

    MATH  Google Scholar 

  16. Borisov, A. V., Kilin, A. A., and Mamaev, I. S., How to Control Chaplygin’s Sphere Using Rotors, Regul. Chaotic Dyn., 2012, vol. 17, no. 3–4, pp. 258–272.

    MathSciNet  MATH  Google Scholar 

  17. Borisov, A. V., Kilin, A. A., and Mamaev, I. S., A Nonholonomic Model of the Paul Trap, Regul. Chaotic Dyn., 2018, vol. 23, no. 3, pp. 339–354.

    MathSciNet  MATH  Google Scholar 

  18. Borisov, A. V. and Mamaev, I. S., Two Non-Holonomic Integrable Problems Tracing Back to Chaplygin, Regul. Chaotic Dyn., 2012, vol. 17, no. 2, pp. 191–198.

    MathSciNet  MATH  Google Scholar 

  19. Borisov, A. V. and Mamaev, I. S., Symmetries and Reduction in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 553–604.

    MathSciNet  MATH  Google Scholar 

  20. Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics, De Gruyter Stud. Math. Phys., vol. 52, Berlin: De Gruyter, 2018.

    MATH  Google Scholar 

  21. Butikov, E. I., An Improved Criterion for Kapitza’s Pendulum Stability, J. Phys. A, 2011, vol. 44, no. 29, 295202, 16 pp.

    MathSciNet  MATH  Google Scholar 

  22. Chaplygin, S. A., On Some Generalization of the Area Theorem with Applications to the Problem of Rolling Balls, in Collected Works: Vol. 1, Moscow: Gostekhizdat, 1948, pp. 26–56 (Russian).

    Google Scholar 

  23. Chase, R. and Pandya, A., A Review of Active Mechanical Driving Principles of Spherical Robots, Robotics, 2012, vol. 1, no. 1, pp. 3–23.

    Google Scholar 

  24. Citro, R., Dalla Torre, E. G., D’Alessio, L., Polkovnikov, A., Babadi, M., Oka, T., and Demler, E., Dynamical Stability of a Many-Body Kapitza Pendulum, Ann. Physics, 2015, vol. 360, pp. 694–710.

    MathSciNet  MATH  Google Scholar 

  25. Crossley, V. A., A Literature Review on the Design of Spherical Rolling Robots, Pittsburgh, Pa., 2006.

  26. Ehrlich, R. and Tuszynski, J., Ball on a Rotating Turntable: Comparison of Theory and Experiment, Am. J. Phys., 1995, vol. 63, no. 4, pp. 351–359.

    Google Scholar 

  27. Gajbhiye, S. and Banavar, R. N., Geometric Tracking Control for a Nonholonomic System: A Spherical Robot, IFAC-PapersOnLine, 2016, vol. 49, no. 18, pp. 820–825.

    Google Scholar 

  28. Gersten, J., Soodak, H., and Tiersten, M. S., Ball Moving on Stationary or Rotating Horizontal Surface, Am. J. Phys., 1992, vol. 60, no. 1, pp. 43–47.

    Google Scholar 

  29. Hogan, F. R. and Forbes, J. R., Modeling of Spherical Robots Rolling on Generic Surfaces, Multibody Syst. Dyn., 2015, vol. 35, no. 1, pp. 91–109.

    MathSciNet  MATH  Google Scholar 

  30. Holmes, P. J., The Dynamics of Repeated Impacts with a Sinusoidally Vibrating Table, J. Sound Vibration, 1982, vol. 84, no. 2, pp. 173–189.

    MathSciNet  MATH  Google Scholar 

  31. Ivanova, T., Kilin, A., and Pivovarova, E., Controlled Motion of a Spherical Robot of Pendulum Type on an Inclined Plane, Dokl. Phys., 2018, vol. 63, no. 7, pp. 302–306.

    Google Scholar 

  32. Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., Controlled Motion of a Spherical Robot with Feedback: 2, J. Dyn. Control Syst., 2019, vol. 25, no. 1, pp. 1–16.

    MathSciNet  MATH  Google Scholar 

  33. Ivanova, T. B. and Pivovarova, E. N., Dynamics and Control of a Spherical Robot with an Axisymmetric Pendulum Actuator, arXiv:1511.02655 (2015).

  34. Joshi, V. A., Banavar, R. N., and Hippalgaonkar, R., Design and Analysis of a Spherical Mobile Robot, Mech. Mach. Theory, 2010, vol. 45, no. 2, pp. 130–136.

    MATH  Google Scholar 

  35. Kapitza, P. L., Dynamical Stability of a Pendulum When Its Point of Suspension Vibrates, in Collected Papers of P. L. Kapitza: Vol. 2, D. ter Haar (Ed.), Oxford: Pergamon, 1965, pp. 714–725; see also: Zh. Eksp. Teor. Fiz., 1951, vol. 21, no. 5, pp. 588–597.

    Google Scholar 

  36. Kapitza, P. L., Pendulum with a Vibrating Suspension, in Collected Papers of P. L. Kapitza: Vol. 2, D. ter Haar (Ed.), Oxford: Pergamon, 1965, pp. 726–732,732a,732b,733–737; see also: Usp. Fiz. Nauk, 1951, vol. 44, no. 5, pp. 7–20.

    Google Scholar 

  37. Karapetian, A. V., Global Qualitative Analysis of Tippe Top Dynamics, Mech. Solids, 2008, vol. 43, no. 3, pp. 342–348; see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2008, no. 3, pp. 33–41.

    Google Scholar 

  38. Karavaev, Yu. L. and Kilin, A. A., Nonholonomic Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform: Theory and Experiments, Proc. Steklov Inst. Math., 2016, vol. 295, pp. 158–167; see also: Tr. Mat. Inst. Steklova, 2016, vol. 295, pp. 174-183.

    MathSciNet  MATH  Google Scholar 

  39. Karavaev, Yu. L., Mamaev, I. S., Kilin, A. A., and Pivovarova, E. N., Spherical Rolling Robots: Different Designs and Control Algorithms, in Robots in Human Life: Proc. of the 23rd Internat. Conf. on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR 2020, Moscow, Aug 24–26 2020), pp. 195–202.

  40. Kholostova, O. V., The Dynamics of a Lagrange Top with a Vibrating Suspension Point, J. Appl. Math. Mech., 1999, vol. 63, no. 5, pp. 741–750; see also: Prikl. Mat. Mekh., 1999, vol. 63, no. 5, pp. 785-796.

    MathSciNet  MATH  Google Scholar 

  41. Kholostova, O. V., The Stability of a “Sleeping” Lagrange Top with a Vibrating Suspension Point, J. Appl. Math. Mech., 2000, vol. 64, no. 5, pp. 821–831; see also: Prikl. Mat. Mekh., 2000, vol. 64, no. 5, pp. 858-868.

    MathSciNet  MATH  Google Scholar 

  42. Kholostova, O. V., Problems of Dynamics of Solids with Vibrating Suspension, Izhevsk: R&C Dynamics, Institute of Computer Science, 2016 (Russian).

    Google Scholar 

  43. Kilin, A. A., and Pivovarova, E. N., Conservation Laws for a Spherical Top on a Plane with Rolling Resistance, 2020 (submitted).

  44. Kilin, A. A., and Pivovarova, E. N., The Influence of the First Integrals and Rolling Resistance Model on Tippe Top Inversion, Nonlinear Dyn., 2020 (submitted).

  45. Kilin, A. A., Pivovarova, E. N., and Ivanova, T. B., Spherical Robot of Combined Type: Dynamics and Control, Regul. Chaotic Dyn., 2015, vol. 20, no. 6, pp. 716–728.

    MathSciNet  MATH  Google Scholar 

  46. Kilin, A. and Pivovarova, E., Nonintegrability of the Problem of a Spherical Top Rolling on a Vibrating Plane, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2020, vol. 30, no. 4, pp. 634–650 (Russian).

    Google Scholar 

  47. Kim, Y.-M., Ahn, S.-S., and Lee, Y., KisBot: New Spherical Robot with Arms, in Proc. of the 10th WSEAS Internat. Conf. on Robotics, Control and Manufacturing Technology (ROCOM’10, Hangzhou, China, Apr 2010), pp. 63–67.

  48. Luo, A. C. and Han, R. P., The Dynamics of a Bouncing Ball with a Sinusoidally Vibrating Table Revisited, Nonlinear Dyn., 1996, vol. 10, no. 1, pp. 1–18.

    MathSciNet  Google Scholar 

  49. Madhushani, T., Maithripala, D., Wijayakulasooriya, J., and Berg, J. M., Semi-Globally Exponential Trajectory Tracking for a Class of Spherical Robots, Automatica, 2017, vol. 85, pp. 327–338.

    MathSciNet  MATH  Google Scholar 

  50. Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Moscow: Nauka, 1978 (Russian).

    Google Scholar 

  51. Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass, Izhevsk: R&C Dynamics, Institute of Computer Science, 2009 (Russian).

    Google Scholar 

  52. Markeev, A. P., On the Motion of a Heavy Dynamically Symmetric Rigid Body with Vibrating Suspension Point, Mech. Solids, 2012, vol. 47, no. 4, pp. 373–379; see also: Izv. Akad. Nauk. Mekh. Tverd. Tela, 2012, vol. , no. 4, pp. 3-10.

    Google Scholar 

  53. Markeev, A. P., Dynamics of a Body That Is in Contact with a Rigid Surface, Izhevsk: R&C Dynamics, Institute of Computer Science, 2014 (Russian).

    Google Scholar 

  54. Markeyev, A. P., The Equations of the Approximate Theory of the Motion of a Rigid Body with a Vibrating Suspension Point, J. Appl. Math. Mech., 2011, vol. 75, no. 2, pp. 132–139; see also: Prikl. Mat. Mekh., 2011, vol. 75, no. 2, pp. 193-203.

    MathSciNet  MATH  Google Scholar 

  55. Michaelis, M., Stroboscopic Study of the Inverted Pendulum, Am. J. Phys., 1985, vol. 53, no. 11, pp. 1079–1083.

    Google Scholar 

  56. Núñez, D. and Torres, P. J., Stabilization by Vertical Vibrations, Math. Methods Appl. Sci., 2009, vol. 32, no. 9, pp. 1118–1128.

    MathSciNet  MATH  Google Scholar 

  57. Poincaré, H., Sur le forme nouvelle des equations de la mecanique, C. R. Acad. Sci. Paris, 1901, vol. 132, pp. 369–371.

    MATH  Google Scholar 

  58. Richards, C. J., Smart, T. J., Jones, P. H., and Cubero, D., A Microscopic Kapitza Pendulum, Sci. Rep., 2018, vol. 8, no. 1, 13107, 10 pp.

    Google Scholar 

  59. Roozegar, M. and Mahjoob, M. J., Modelling and Control of a Non-Holonomic Pendulum-Driven Spherical Robot Moving on an Inclined Plane: Simulation and Experimental Results, IET Control Theory Appl., 2017, vol. 11, no. 4, pp. 541–549.

    MathSciNet  Google Scholar 

  60. Schroll, G. C., Dynamic Model of a Spherical Robot from First Principles, Master Thesis, Boulder,CO: Colorado State Univ., 2010.

  61. Sheheitli, H., On the Dynamics of a Spinning Top under High-Frequency Excitation: P. 1. Pivot Point under Vertical Harmonic Vibration, Nonlinear Dyn., 2017, vol. 90, no. 2, pp. 765–779.

    MathSciNet  Google Scholar 

  62. Sokirko, A. V., Belopolskii, A. A., Matytsyn, A. V., and Kossakowski, D. A., Behavior of a Ball on the Surface of a Rotating Disk, Am. J. Phys., 1994, vol. 62, no. 2, pp. 151–156.

    Google Scholar 

  63. Stephenson, A., On a New Type of Dynamical Stability, Mem. Proc. Manch. Lit. Phil. Soc., 1908, vol. 52, no. 8, pp. 1–10.

    MATH  Google Scholar 

  64. Sugiyama, Y., Shiotsu, A., Yamanaka, M., and Hirai, S., Circular/Spherical Robots for Crawling and Jumping, in Proc. of the 2005 IEEE International Conference on Robotics and Automation (Barcelona, Spain, Apr 2005), pp. 3595–3600.

  65. Svinin, M., Morinaga, A., and Yamamoto, M., On the Dynamic Model and Motion Planning for a Spherical Rolling Robot Actuated by Orthogonal Internal Rotors, Regul. Chaotic Dyn., 2013, vol. 18, no. 1–2, pp. 126–143.

    MathSciNet  MATH  Google Scholar 

  66. Torosov, B. T., Della Valle, G., and Longhi, S., Imaginary Kapitza Pendulum, Phys. Rev. A, 2013, vol. 88, no. 5, 052106, 7 pp.

    Google Scholar 

  67. Wait, K. W., Jackson, P. J., and Smoot, L. S., Self Locomotion of a Spherical Rolling Robot Using a Novel Deformable Pneumatic Method, in Proc. of the IEEE Internat. Conf. on Robotics and Automation (Anchorage, Alaska, 2010), pp. 3757–3762.

  68. Yu, T., Sun, H., Jia, Q., Zhang, Y., and Zhao, W., Stabilization and Control of a Spherical Robot on an Inclined Plane, Res. J. Appl. Sci. Eng. Tech., 2013, vol. 5, no. 6, pp. 2289–2296.

    Google Scholar 

  69. Yu, T., Sun, H., Jia, Q., and Zhao, W., Path Following Control of a Spherical Robot Rolling on an Inclined Plane, Sens. Transducers, 2013, vol. 21, no. 5, pp. 42–47.

    Google Scholar 

  70. Zengel, K., The Electromagnetic Analogy of a Ball on a Rotating Conical Turntable, Am. J. Phys., 2017, vol. 85, no. 12, pp. 901–907.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors extend their gratitude to I. S. Mamaev for useful discussions of the results obtained.

Funding

This work was carried out at the Ural Mathematical Center within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (project FEWS-2020-0009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander A. Kilin or Elena N. Pivovarova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

70E18, 37J60, 70E50, 34H15

APPENDIX A. PROOF OF THE EQUIVALENCE OF TWO SYSTEMS AND DERIVATION OF THE HAMILTONIAN (2.15)

1. Due to the spherical symmetry of the shell and due to the invariance of the system under rotations about the vertical, the equations for the variables \((\boldsymbol{\omega},\boldsymbol{\gamma})\) decouple from the complete system of equations (2.1) and (2.7). Using the variables \(\boldsymbol{M},\boldsymbol{\gamma}\), these equations can be represented as

$$\displaystyle\dot{\boldsymbol{M}}+\boldsymbol{\omega}\times\boldsymbol{M}=\eta(\boldsymbol{e}_{3},\boldsymbol{\gamma}\times\boldsymbol{\omega})\boldsymbol{\gamma}\times(\boldsymbol{e}_{3}\times\boldsymbol{\omega})+(\tilde{{\rm g}}-\ddot{\tilde{\xi}}(t))\boldsymbol{\gamma}\times\boldsymbol{e}_{3},$$
(A.1)
$$\displaystyle\dot{\boldsymbol{\gamma}}=\boldsymbol{\gamma}\times\boldsymbol{\omega},$$
where \(\boldsymbol{\omega}={\bf D}^{-1}\boldsymbol{M}\) and the following notation has been introduced:
$$\tilde{{\rm g}}=\dfrac{{\rm g}}{\ell},\quad\tilde{\xi}(t)=\dfrac{\xi(t)}{\ell},\quad\ell=\dfrac{\hat{I}}{m\rho\tilde{I}}.$$

In this case, the dynamics of the variables \(\boldsymbol{\alpha},\boldsymbol{\beta},{\bf S},{\bf r}\) is given by the quadratures (2.1), and the angular velocities of rotation of the shell \(\boldsymbol{\Omega}\) on a fixed level set of the Chaplygin integral \(\boldsymbol{\mathcal{K}}^{abs}\) depend on the variables \(\boldsymbol{\omega},{\bf Q}\) as follows:

$$\boldsymbol{\Omega}={\bf J}^{-1}\left({\bf Q}\boldsymbol{\mathcal{K}}^{abs}+m\rho R\boldsymbol{\gamma}\times(\boldsymbol{e}_{3}\times\boldsymbol{\omega})\right).$$

As shown in [10], the reduced system of equations describing the motion of the top fastened to the shell rolling without slipping on the plane is equivalent, up to a change of parameters, to a system of equations describing the dynamics of an unbalanced dynamically asymmetric ball on an absolutely smooth plane.

It is easy to see (by direct verification of the equations of motion) that the following proposition holds.

Proposition 3

The reduced system of equations (A.1) \((\) for the variables \(\boldsymbol{M},\boldsymbol{\gamma}\) \()\) , which describes the dynamics of an axisymmetric pendulum fastened at the center of a spherical shell rolling on an absolutely rough vibrating plane, coincides, up to a change of parameters, with the reduced system describing the dynamics of a spherical top with an axisymmetric mass distribution on a smooth vibrating plane. In this case, the parameters of the top are related to the dimensionless parameters of the system (A.1) by

$$\eta=\dfrac{m_{t}a_{t}^{2}}{i_{1}^{(t)}},\quad\nu=\dfrac{i_{1}^{(t)}}{i_{3}^{(t)}},\quad\ell=\dfrac{i_{1}^{(t)}}{m_{t}a_{t}},$$
where \(m_{t}\) is the mass of the top, \(i_{1}^{(t)},i_{3}^{(t)}\) are its equatorial and axial moments of inertia, respectively, and \(a_{t}\) is the displacement of the center of mass along the symmetry axis. The dimensionless angular momentum \(\boldsymbol{M}\) (2.9) coincides, up to a constant factor, with the spherical top’s angular momentum calculated with respect to the point of contact.

This conclusion can be extended to an arbitrary mass distribution of the bodies (the top and the pendulum) for motion on a vibrating plane. In this case, the shell must be homogeneous and have a spherical tensor of inertia.

2. Next, we consider the procedure of reducing equations (A.1) to a system with one and a half degrees of freedom.

Equations (A.1) admit three integrals of motion \(\mathcal{F}_{0},\mathcal{F}_{1},\mathcal{F}_{2}\) and the symmetry field (2.13). Following [19], we choose as variables of the reduced system the integrals of the symmetry field

$$k_{3}=\dfrac{1}{k}(\omega_{2}\gamma_{1}-\omega_{1}\gamma_{2})\quad\text{and}\quad\gamma_{3},$$
where
$$k=\sqrt{\dfrac{1-\gamma_{3}^{2}}{1+\eta(1-\gamma_{3}^{2})}}.$$
On the fixed level set of the integrals (2.8) and (2.10)
$$\mathcal{F}_{1}=k_{1},\quad\mathcal{F}_{2}=k_{2}$$
the equations of motion take the form
$$\begin{array}[]{c}\dot{k}_{3}=-\dfrac{k(k_{2}-k_{1}\gamma_{3})(k_{2}\gamma_{3}-k_{1})}{(1-\gamma_{3}^{2})^{2}}+k(\tilde{{\rm g}}-\ddot{\tilde{\xi}}(t)),\\ \dot{\gamma}_{3}=kk_{3}.\end{array}$$
(A.2)

To recover the dynamics of the complete system (A.1), we need to add to Eqs. (A.2) a quadrature for the angle of proper rotation

$$\dot{\varphi}=\nu k_{1}-\dfrac{\gamma_{3}(k_{2}-k_{1}\gamma_{3})}{1-\gamma_{3}^{2}}.$$
In this case, the time dependence of the angular velocities \(\boldsymbol{\omega}\) and the other two components, \(\gamma_{1},\gamma_{2}\), will be determined by the algebraic relations
$$\begin{array}[]{c}\omega_{1}=\dfrac{(k_{2}-k_{1}\gamma_{3})\gamma_{1}-kk_{3}\gamma_{2}}{1-\gamma_{3}^{2}},\quad\omega_{2}=\dfrac{(k_{2}-k_{1}\gamma_{3})\gamma_{2}+kk_{3}\gamma_{1}}{1-\gamma_{3}^{2}},\\ \omega_{3}=\nu k_{1},\quad\gamma_{1}=\sqrt{1-\gamma_{3}^{2}}\cos\varphi,\quad\gamma_{2}=\sqrt{1-\gamma_{3}^{2}}\sin\varphi.\end{array}$$

Thus, the reduction yields a system with one and a half degrees of freedom (A.2).

3. Reduction to Hamiltonian form.

We transform from the variables \(k_{3},\gamma_{3}\) to the nutation angle \(\vartheta\) and its derivative \(\dot{\vartheta}\) by making the change of variables

$$\gamma_{3}=\cos\vartheta,\quad k_{3}=-\sqrt{1+\eta\sin^{2}\vartheta}\dot{\vartheta}.$$
Now Eqs. (A.2) can be written in the Lagrangian form
$$\begin{array}[]{c}\left(\dfrac{\partial\mathcal{L}}{\partial\dot{\vartheta}}\right)^{\!\!\boldsymbol{\cdot}}-\dfrac{\partial\mathcal{L}}{\partial\vartheta}=0,\\ \mathcal{L}=\dfrac{1}{2}(1+\eta\sin^{2}\vartheta)\dot{\vartheta}^{2}-\dfrac{1}{2}\dfrac{(k_{2}-k_{1}\cos\vartheta)^{2}}{\sin^{2}\vartheta}-\tilde{{\rm g}}\cos{\vartheta}+\sin\vartheta\dot{\vartheta}\dot{\tilde{\xi}}(t).\end{array}$$

Making a standard Legendre transformation, we can represent the resulting equations in Hamiltonian form with a canonical Poisson bracket and the Hamiltonian

$$\mathcal{H}=\dfrac{1}{2}\dfrac{\Big{(}p_{\vartheta}-\dot{\tilde{\xi}}(t)\sin\vartheta\Big{)}^{2}}{1+\eta\sin^{2}\vartheta}+\dfrac{1}{2}\dfrac{(k_{2}-k_{1}\cos\vartheta)^{2}}{\sin^{2}\vartheta}+\tilde{{\rm g}}\cos\vartheta.$$
(A.3)
Here, the momentum \(p_{\vartheta}\) is related to the derivative of the nutation angle by
$$p_{\vartheta}=(1+\eta\sin^{2}\vartheta)\dot{\vartheta}+\dot{\tilde{\xi}}(t)\sin\vartheta.$$

Remark 6

The Hamiltonian (A.3) differs from the total energy (2.12) by a constant value depending on the values of the first integrals, and by the explicit function of time

$$\mathcal{H}=\left(\mathcal{E}-\dfrac{1}{2\tilde{I}}(\boldsymbol{\mathcal{K}}^{abs})^{2}-\dfrac{1}{2}{{\mathcal{K}}_{\gamma}^{2}}\left(\dfrac{1}{I}-\dfrac{1}{\tilde{I}}\right)-\dfrac{i_{3}\nu k_{1}^{2}}{2}-m\rho(R+\xi(t))-\dfrac{1}{2}m\left(\dot{\xi}(t)\right)^{2}\right)\dfrac{\tilde{I}}{\hat{I}}.$$

We note that the momentum \(p_{\vartheta}\) has been calculated in the fixed coordinate system. However, it is sometimes more convenient to use a (relative) momentum calculated in a coordinate system attached to an oscillating plane. The transformation from \(p_{\vartheta}\) to the new momentum is given by the following relation:

$$\tilde{p}=p_{\vartheta}-\dot{\tilde{\xi}}(t)\sin\vartheta.$$
In the new variables the Hamiltonian of the system takes the form
$$\mathcal{H}=\dfrac{\tilde{p}^{2}}{2(1+\eta\sin^{2}\vartheta)}+\dfrac{(k_{2}-k_{1}\cos\vartheta)^{2}}{2\sin^{2}\vartheta}+(\tilde{{\rm g}}+\ddot{\tilde{\xi}}(t))\cos\vartheta.$$
(A.4)

We now introduce a dimensionless time variable \(\tau\) by making the following transformations:

$$t=\dfrac{1}{\Omega}\tau,\quad k_{1}=\Omega\kappa_{1},\quad k_{2}=\Omega\kappa_{2},\quad\tilde{p}=\Omega p,\quad\tilde{{\rm g}}=\Omega^{2}\gamma,$$
where \(\gamma\) is the dimensionless free-fall acceleration. After these transformations and substitution of the law of oscillations of the plane (2.14), the Hamiltonian (A.4) takes the form (2.15).

APPENDIX B. DERIVATION OF AN EXPRESSION FOR THE COEFFICIENT $$c$$

To reduce the Hamiltonian (3.12) to the form (3.13), we define the generating function, which depends on the old coordinates \(q\), new momenta \(p_{1}\) and time \(\tau\), as

$$S(q,p_{1},\tau)=qp_{1}+a_{1}(\tau)q^{4}+a_{2}(\tau)q^{3}p_{1}+a_{3}(\tau)q^{2}p_{1}^{2}+a_{4}(\tau)qp_{1}^{3}+a_{5}(\tau)p_{1}^{4},$$
where \(a_{i}(\tau)\) (\(i=1\ldots 5\)) are unknown periodic functions of time. Then the change of variables has the form
$$\displaystyle q=q_{1}-a_{2}(\tau)q_{1}^{3}-2a_{3}(\tau)q_{1}^{2}p_{1}-3a_{4}(\tau)q_{1}p_{1}^{2}-4a_{5}(\tau)p_{1}^{3},$$
$$\displaystyle p=p_{1}+4a_{1}(\tau)q_{1}^{3}+3a_{2}(\tau)q_{1}^{2}p_{1}+2a_{3}(\tau)q_{1}p_{1}^{2}+a_{4}(\tau)p_{1}^{3},$$
where we have discarded terms higher than degree 4 in \(q_{1}\), \(p_{1}\). Expressing the Hamiltonian (3.12) in terms of the new variables and reducing it to the form (3.13), we obtain a system of five differential equations for the coefficients \(a_{i}(\tau)\). To find an explicit form of the change of variables, it is necessary to integrate all five equations. However, only three of these five equations contain the coefficient \(c\). Therefore, to search for the coefficient \(c\), it suffices to consider a system of only three equations:
$$\displaystyle a^{\prime}_{1}(\tau)-\lambda a_{2}(\tau)-\dfrac{\eta}{2}n_{11}^{2}n_{21}^{2}-\dfrac{B}{24}n_{11}^{4}=\dfrac{1}{4}c,$$
$$\displaystyle a^{\prime}_{3}(\tau)3\lambda(a_{2}(\tau)-a_{4}(\tau))-\dfrac{\eta}{2}(n_{11}^{2}n_{22}^{2}+4n_{11}n_{12}n_{21}n_{22}+n_{12}^{2}n_{21}^{2})-\dfrac{B}{4}n_{11}^{2}n_{12}^{2}=\dfrac{1}{2}c,$$
$$\displaystyle a^{\prime}_{5}(\tau)+\lambda a_{4}(\tau)-\dfrac{\eta}{2}n_{12}^{2}n_{22}^{2}-\dfrac{B}{24}n_{12}^{4}=\dfrac{1}{4}c,$$
where \(B=\kappa-\dfrac{3}{4}\zeta+\delta\cos\tau\). Multiplying these equations, respectively, by 24, 8 and 24 and adding up, we obtain one equation:
$$\displaystyle 8(3a^{\prime}_{1}(\tau)+a^{\prime}_{3}(\tau)+3a^{\prime}_{5}(\tau))-4\eta\left(3(n_{11}n_{21}+n_{12}n_{22})^{2}+(n_{11}n_{22}-n_{12}n_{21})^{2}\right)-B\left(n_{11}^{2}+n_{12}^{2}\right)^{2}=16c.$$
Let us integrate this equation over \(\tau\), noting that the coefficients \(a_{i}(\tau)\) are periodic functions. Then the integral (over the period) of the first term containing the derivatives \(a^{\prime}_{i}(\tau)\) is zero. Expressing the coefficient \(c\), we obtain
$$c=-\dfrac{1}{32\pi}\int\limits_{0}^{2\pi}B\left(n_{11}^{2}+n_{12}^{2}\right)^{2}+4\eta\left(3(n_{11}n_{21}+n_{12}n_{22})^{2}+(n_{11}n_{22}-n_{12}n_{21})^{2}\right)d\tau.$$
Substituting into this equation the expressions for \(n_{11},n_{12},n_{21},n_{22}\), written in terms of \(\mu_{1},\mu_{2},\nu_{1},\nu_{2}\), we obtain (3.14).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilin, A.A., Pivovarova, E.N. Stability and Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base. Regul. Chaot. Dyn. 25, 729–752 (2020). https://doi.org/10.1134/S1560354720060155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354720060155

Keywords

Navigation