Skip to main content
Log in

Twisted States in a System of Nonlinearly Coupled Phase Oscillators

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We study the dynamics of the ring of identical phase oscillators with nonlinear nonlocal coupling. Using the Ott–Antonsen approach, the problem is formulated as a system of partial derivative equations for the local complex order parameter. In this framework, we investigate the existence and stability of twisted states. Both fully coherent and partially coherent stable twisted states were found (the latter ones for the first time for identical oscillators). We show that twisted states can be stable starting from a certain critical value of the medium length, or on a length segment. The analytical results are confirmed with direct numerical simulations in finite ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pikovsky, A., Rosenblum, M., and Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, New York: Cambridge Univ. Press, 2001.

    Book  Google Scholar 

  2. Osipov, G., Kurths, J., and Zhou, C., Synchronization in Oscillatory Networks, Berlin: Springer, 2007.

    Book  Google Scholar 

  3. Afraimovich, V. S., Nekorkin, V. I., Osipov, G.V., and Shalfeev, V. D., Stability, Structures and Chaos in Nonlinear Synchronization Networks, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, vol. 6, River Edge, N.J.: World Sci., 1994.

    MATH  Google Scholar 

  4. Pantaleone, J., Synchronization of Metronomes, Am. J. Phys., 2002, vol. 70, no. 10, pp. 992–1000.

    Article  Google Scholar 

  5. Chhabria, S., Blaha, K. A., Rossa, F. D., and Sorrentino, F., Targeted Synchronization in an Externally Driven Population of Mechanical Oscillators, Chaos, 2018, vol. 28, no. 11, 111102, 6 pp.

    Article  MathSciNet  Google Scholar 

  6. Machowski, J., Bialek, J. W., and Bumby, J., Power System Dynamics: Stability and Control, 2nd ed., New Jersey: Wiley, 2012.

    Google Scholar 

  7. Menck, P. J., Heitzig, J., Kurths, J., and Schellnhuber, H. J., How Dead Ends Undermine Power Grid Stability, Nat. Commun., 2014, vol. 5, Art. 3969, 8 pp.

  8. Ryu, S., Yu, W., and Stroud, D., Dynamics of an Underdamped Josephson-Junction Ladder, Phys. Rev. E, 1996, vol. 53, no. 3, pp. 2190–2195.

    Article  Google Scholar 

  9. Zheng, Z., Hu, B., and Hu, B., Phase Slips and Phase Synchronization of Coupled Oscillators, Phys. Rev. Lett., 1998, vol. 81, no. 24, pp. 5318–5321.

    Article  Google Scholar 

  10. Homma, S. and Takeno, S., A Coupled Base-Rotator Model for Structure and Dynamics of DNA: Local Fluctuations in Helical Twist Angles and Topological Solitons, Prog. Theor. Phys., 1984, vol. 72, no. 4, pp. 679–693.

    Article  MathSciNet  Google Scholar 

  11. Takeno, Sh. and Homma, Sh., Kinks and Breathers Associated with Collective Sugar Puckering in DNA, Progr. Theoret. Phys., 1987, vol. 77, no. 3, pp. 548–562.

    Article  MathSciNet  Google Scholar 

  12. Pikovsky, A. and Rosenblum, M., Dynamics of Globally Coupled Oscillators: Progress and Perspectives, Chaos, 2015, vol. 25, no. 9, 097616, 11 pp.

    Article  MathSciNet  Google Scholar 

  13. Kuramoto, Y., Chemical Oscillations, Waves, and Turbulence, Springer Ser. Synergetics, vol. 19, Berlin: Springer, 1984.

    Book  Google Scholar 

  14. Acebron, J., Bonilla, L., Vicente, C. P., Ritort, F., and Spigler, R., The Kuramoto Model: A Simple Paradigm for Synchronization Phenomena, Rev. Mod. Phys., 2005, vol. 77, no. 1, pp. 137–185.

    Article  Google Scholar 

  15. Rodrigues, F. A., Peron, Th. K. D. M., Ji, P., and Kurths, J., The Kuramoto Model in Complex Networks, Phys. Rep., 2016, vol. 610, pp. 1–98.

    Article  MathSciNet  Google Scholar 

  16. Laing, C. R., The Dynamics of Chimera States in Heterogeneous Kuramoto Networks, Phys. D, 2009, vol. 238, no. 16, pp. 1569–1588.

    Article  MathSciNet  Google Scholar 

  17. Smirnov, L., Osipov, G., and Pikovsky, A., Chimera Patterns in the Kuramoto–Battogtokh Model, J. Phys. A, 2017, vol. 50, no. 8, 08LT01, 5 pp.

    Article  Google Scholar 

  18. Bordyugov, G. A., Pikovsky, A. S., and Rosenblum, M. G., Self-Emerging and Turbulent Chimeras in Oscillator Chains, Phys. Rev. E., 2010, vol. 82, no. 3, 035205, 4 pp.

    Article  MathSciNet  Google Scholar 

  19. Girnyk, T., Hasler, M., and Maistrenko, Yu., Multistability of Twisted States in Non-Locally Coupled Kuramoto-Type Models, Chaos, 2012, vol. 22, no. 1, 013114, 10 pp.

    Article  MathSciNet  Google Scholar 

  20. Wiley, D. A., Strogatz, S. H., and Girvan, M., The Size of the Sync Basin, Chaos, 2006, vol. 16, no. 1, 015103, 8 pp.

    Article  MathSciNet  Google Scholar 

  21. Omel’chenko, O. E., Wolfrum, M., and Laing, C. R., Partially Coherent Twisted States in Arrays of Coupled Phase Oscillators, Chaos, 2014, vol. 24, no. 2, 023102, 9 pp.

    Article  MathSciNet  Google Scholar 

  22. Kuznetsov, S. P. and Mosekilde, E., Coupled Map Lattices with Complex Order Parameter, Phys. A, 2001, vol. 291, nos. 1–4, pp. 299–316.

    Article  MathSciNet  Google Scholar 

  23. Rosenblum, M. and Pikovsky, A., Self-Organized Quasiperiodicity in Oscillator Ensembles with Global Nonlinear Coupling, Phys. Rev. Lett., 2007, vol. 98, no. 6, 064101, 4 pp.

    Article  Google Scholar 

  24. Pikovsky, A. and Rosenblum, M., Self-Organized Partially Synchronous Dynamics in Populations of Nonlinearly Coupled Oscillators, Phys. D, 2009, vol. 238, no. 1, pp. 27–37.

    Article  MathSciNet  Google Scholar 

  25. Ott, E. and Antonsen, Th. M., Low Dimensional Behavior of Large Systems of Globally Coupled Oscillators, Chaos, 2008, vol. 18, no. 3, 037113, 6 pp.

    Article  MathSciNet  Google Scholar 

  26. Chowdhury, D. and Cross, M. C., Synchronization of Oscillators with Long-Range Power Law Interactions, Phys. Rev. E, 2010, vol. 82, no. 1, 016205, 12 pp.

    Article  Google Scholar 

Download references

Funding

This work was supported by the RFBR (grant No. 19-52-12053) and the RSF (grant No. 19-12-00367).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dmitry Bolotov, Maxim Bolotov, Lev Smirnov, Grigory Osipov or Arkady Pikovsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolotov, D., Bolotov, M., Smirnov, L. et al. Twisted States in a System of Nonlinearly Coupled Phase Oscillators. Regul. Chaot. Dyn. 24, 717–724 (2019). https://doi.org/10.1134/S1560354719060091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354719060091

Keywords

MSC2010 numbers

Navigation