Skip to main content
Log in

Roaming at Constant Kinetic Energy: Chesnavich’s Model and the Hamiltonian Isokinetic Thermostat

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We consider the roaming mechanism for chemical reactions under the nonholonomic constraint of constant kinetic energy. Our study is carried out in the context of the Hamiltonian isokinetic thermostat applied to Chesnavich’s model for an ion-molecule reaction. Through an analysis of phase space structures we show that imposing the nonholonomic constraint does not prevent the system from exhibiting roaming dynamics, and that the origin of the roaming mechanism turns out to be analogous to that found in the previously studied Hamiltonian case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d, V. I., Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math., vol. 60, New York: Springer, 1989.

    Book  MATH  Google Scholar 

  2. Bowman, J. M., Skirting the Transition State, a New Paradigm in Reaction Rate Theory, Proc. Natl. Acad. Sci. USA, 2006, 103, no., 44, pp. 16061–16062.

    Article  Google Scholar 

  3. Bowman, J. M. and Shepler, B. C., Roaming Radicals, Annu. Rev. Phys. Chem., 2011, vol. 62, pp. 531–553.

    Article  Google Scholar 

  4. Bowman, J. M. and Suits, A. G., Roaming Reactions: The Third Way, Phys. Today, 2011, vol. 64, no. 11, pp. 33–37.

    Article  Google Scholar 

  5. Bowman, J. M., Roaming, Mol. Phys., 2014, vol. 112, no. 19, pp. 2516–2528.

    Article  Google Scholar 

  6. Chesnavich, W. J., Multiple Transition States in Unimolecular Reactions, J. Chem. Phys., 1986, vol. 84, no. 5, pp. 2615–2619.

    Article  Google Scholar 

  7. Collins, P., Ezra, G. S., and Wiggins, S., Phase Space Structure and Dynamics for the Hamiltonian Isokinetic Thermostat, J. Chem. Phys., 2010, vol. 133, no. 1, 014105, 18 pp.

    Article  Google Scholar 

  8. Dettmann, C. P. and Morriss, G. P., Hamiltonian Formulation of the Gaussian Isokinetic Thermostat, Phys. Rev. E, 1996, vol. 54, no. 3, pp. 2495–2500.

    Article  Google Scholar 

  9. Ezra, G. S. and Wiggins, S., Impenetrable Barriers in Phase Space for Deterministic Thermostats, J. Phys. A, 2009, vol. 42, no. 4, 042001, 11 pp.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ezra, G. S. and Wiggins, S., The Chesnavich Model for Ion-Molecule Reactions: A Rigid Body Coupled to a Particle, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2019, vol. 29, no. 2, 1950025, 9 pp.

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiménez Madrid, J. A. and Mancho, A. M., Distinguished Trajectories in Time Dependent Vector Fields, Chaos, 2009, vol. 19, no. 1, 013111, 18 pp.

    Article  MathSciNet  Google Scholar 

  12. Krajňák, V. and Waalkens, H., The Phase Space Geometry Underlying Roaming Reaction Dynamics, J. Math. Chem., 2018, vol. 56, no. 8, pp. 2341–2378.

    Article  MathSciNet  MATH  Google Scholar 

  13. Krajňák, V. and Wiggins, S., Influence of Mass and Potential Energy Surface Geometry on Roaming in Chesnavich’s CH +4 Model, J. Chem. Phys., 2018, vol. 149, no. 9, 094109, 47 pp.

    Article  Google Scholar 

  14. Litniewski, M., Molecular Dynamics Method for Simulating the Constant Temperature Volume and Temperature-Pressure System, J. Phys. Chem., 1993, vol. 97, no. 15, pp. 3842–3848.

    Article  Google Scholar 

  15. Lopesino, C., Balibrea, F., Wiggins, S., and Mancho, A. M., Lagrangian Descriptors for Two Dimensional, Area Preserving, Autonomous and Nonautonomous Maps, Commun. Nonlinear Sci. Numer. Simul., 2015, vol. 27, nos. 1–3, pp. 40–51.

    Article  MathSciNet  MATH  Google Scholar 

  16. Mauguière, F. A. L., Collins, P., Ezra, G. S., Farantos, S. C., and Wiggins, S., Multiple Transition States and Roaming in Ion-Molecule Reactions: A Phase Space Perspective, J. Phys. Chem. Lett., 2014, vol. 592, pp. 282–287.

    Article  Google Scholar 

  17. Mauguière, F. A. L., Collins, P., Ezra, G. S., Farantos, S. C., and Wiggins, S., Roaming Dynamics in Ion-Molecule Reactions: Phase Space Reaction Pathways and Geometrical Interpretation, J. Chem. Phys., 2014, vol. 140, no. 13, 134112, 44 pp.

    Article  Google Scholar 

  18. Mauguière, F. A. L., Collins, P., Kramer, Z. C., Carpenter, B. K., Ezra, G. S., Farantos, S. C., and Wiggins, S., Phase Space Barriers and Dividing Surfaces in the Absence of Critical Points of the Potential Energy: Application to Roaming in Ozone, J. Chem. Phys., 2016, vol. 144, no. 5, 054107, 35 pp.

    Article  Google Scholar 

  19. Mauguière, F. A. L., Collins, P., Kramer, Z. C., Carpenter, B. K., Ezra, G. S., Farantos, S. C., and Wiggins, S., Roaming: A Phase Space Perspective, Annu. Rev. Phys. Chem., 2017, vol. 68, pp. 499–524.

    Article  Google Scholar 

  20. Minary, P., Martyna, G. J., and Tuckerman, M. E., Algorithms and Novel Applications Based on the Isokinetic Ensemble: 1. Biophysical and Path Integral Molecular Dynamics, J. Chem. Phys., 2003, vol. 118, no. 6, pp. 2510–2526.

    Article  Google Scholar 

  21. Minary, P., Martyna, G. J., and Tuckerman, M. E., Algorithms and Novel Applications Based on the Isokinetic Ensemble: 2. Ab initio Molecular Dynamics, J. Chem. Phys., 2003, vol. 118, no. 6, pp. 2527–2538.

    Article  Google Scholar 

  22. Morishita, T., Generalized Coupling to a Heat Bath: Extension of the Gaussian Isokinetic Dynamics and Effect of Time Scaling, J. Chem. Phys., 2003, vol. 119, no. 14, pp. 7075–7082.

    Article  Google Scholar 

  23. Morriss, G. P. and Dettmann, C. P., Thermostats: Analysis and Application, Chaos, 1998, vol. 8, no. 2, pp. 321–336.

    Article  MATH  Google Scholar 

  24. Suits, A. G., Roaming Atoms and Radicals: A New Mechanism in Molecular Dissociation, Acc. Chem. Res., 2008, vol. 41, no. 7, pp. 873–881.

    Article  Google Scholar 

  25. Townsend, D., Lahankar, S. A., Lee, S. K., Chambreau, S. D, Suits, A. G., Zhang, X., Rheinecker, J., Harding, L. B., and Bowman, J. M., The Roaming Atom: Straying from the Reaction Path in Formaldehyde Decomposition, Science, 2004, vol. 306, no. 5699, pp. 1158–1161.

    Article  Google Scholar 

  26. Uzer, T., Jaffé, Ch., Palacián, J., Yanguas, P., and Wiggins, S., The Geometry of Reaction Dynamics, Nonlinearity, 2002, vol. 15, no. 4, pp. 957–992.

    Article  MathSciNet  MATH  Google Scholar 

  27. Waalkens, H., Schubert, R., and Wiggins, S., Wigner’s Dynamical Transition State Theory in Phase Space: Classical and Quantum, Nonlinearity, 2008, vol. 21, no. 1, R1–R118.

    Article  MathSciNet  MATH  Google Scholar 

  28. Wiggins, S., Wiesenfeld, L., Jaffé, C., and Uzer, T., Impenetrable Barriers in Phase-Space, Phys. Rev. Lett., 2001, vol. 86, no. 24, pp. 5478–5481.

    Article  Google Scholar 

  29. Wiggins, S., The Role of Normally Hyperbolic Invariant Manifolds (NHIMs) in the Context of the Phase Space Setting for Chemical Reaction Dynamics, Regul. Chaotic Dyn., 2016, vol. 21, no. 6, pp. 621–638.

    Article  MathSciNet  MATH  Google Scholar 

  30. van Zee, R. D., Foltz, M. F., and Moore, C. B., Evidence for a Second Molecular Channel in the Fragmentation of Formaldehyde, J. Chem. Phys., 1993, vol. 99, no. 3, pp. 1664–1673.

    Article  Google Scholar 

Download references

Funding

We acknowledge the support of EPSRC Grant no. EP/P021123/1 and Office of Naval Research (Grant No. N00014-01-1-0769).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimír Krajňák, Gregory S. Ezra or Stephen Wiggins.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krajňák, V., Ezra, G.S. & Wiggins, S. Roaming at Constant Kinetic Energy: Chesnavich’s Model and the Hamiltonian Isokinetic Thermostat. Regul. Chaot. Dyn. 24, 615–627 (2019). https://doi.org/10.1134/S1560354719060030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354719060030

Keywords

MSC2010 numbers

Navigation