Skip to main content
Log in

Hamiltonization and Separation of Variables for a Chaplygin Ball on a Rotating Plane

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We discuss a non-Hamiltonian vector field appearing in considering the partial motion of a Chaplygin ball rolling on a horizontal plane which rotates with constant angular velocity. In two partial cases this vector field is expressed via Hamiltonian vector fields using a nonalgebraic deformation of the canonical Poisson bivector on e*(3). For the symmetric ball we also calculate variables of separation, compatible Poisson brackets, the algebra of Haantjes operators and 2 × 2 Lax matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appell, P., Sur des transformations de movements, J. Reine Angew. Math., 1892, vol. 110, pp. 37–41.

    MathSciNet  MATH  Google Scholar 

  2. Balsero, P. and García-Naranjo, L.C., Gauge Transformations, Twisted Poisson Brackets and Hamiltonization of Nonholonomic Systems, Arch. Ration. Mech. Anal., 2012, vol. 205, no. 1, pp. 267–310.

    Article  Google Scholar 

  3. Bizayev, I. A. and Tsiganov, A.V., On the Routh Sphere Problem, J. Phys. A, 2013, vol. 46, 085202, 11 pp.

    Google Scholar 

  4. Bizyaev, I.A., Borisov, A.V., and Mamaev, I. S., Hamiltonization of Elementary Nonholonomic Systems, Russ. J. Math. Phys., 2015, vol. 22, no. 4, pp. 444–453.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bizyaev, I.A., Borisov, A.V., and Mamaev, I. S., The Hojman Construction and Hamiltonization of Nonholonomic Systems, SIGMA Symmetry Integrability Geom. Methods Appl., 2016, vol. 12, Paper No. 012, 19 pp.

    Google Scholar 

  6. Bizyaev, I.A., Borisov, A.V., and Mamaev, I. S., Dynamics of the Chaplygin Ball on a Rotating Plane, Russ. J. Math. Phys., 2018, vol. 25, no. 4, pp. 423–433.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bloch, A.M., Fernandez, O. E., and Mestdag, T., Hamiltonization of Nonholonomic Systems and the Inverse Problem of the Calculus of Variations, Rep. Math. Phys., 2009, vol. 63, no. 2, pp. 225–249.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Geometrisation of Chaplygin’s Reducing Multiplier Theorem, Nonlinearity, 2015, vol. 28, no. 7, pp. 2307–2318.

    Article  MathSciNet  MATH  Google Scholar 

  9. Borisov, A. V. and Mamaev, I. S., Chaplygin’s Ball Rolling Problem Is Hamiltonian, Math. Notes, 2001, vol. 70, no. 5, pp. 720–723; see also: Mat. Zametki, 2001, vol. 70, no. 5, pp. 793–795.

    Article  MathSciNet  MATH  Google Scholar 

  10. Borisov, A.V., Mamaev, I. S., and Tsyganov, A.V., Nonholonomic Dynamics and Poisson Geometry, Russian Math. Surveys, 2014, vol. 69, no. 3, pp. 481–538; see also: Uspekhi Mat. Nauk, 2014, vol. 69, no. 3(417), pp. 87–144.

    Article  MathSciNet  Google Scholar 

  11. Chaplygin, S. A., On a Ball’s Rolling on a Horizontal Plane, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 131–148; see also: Math. Sb., 1903, vol. 24, no. 1, pp. 139–168.

    Article  MathSciNet  MATH  Google Scholar 

  12. Chaplygin, S.A., On the Theory ofMotion of Nonholonomic Systems. The Reducing-Multiplier Theorem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 369–376; see also: Mat. Sb., 1912, vol. 28, no. 2, pp. 303–314.

    Article  MathSciNet  MATH  Google Scholar 

  13. Collection of Papers Combining the Fields of Physics and Machine Learning, http://physicsml.github.io (2018).

  14. Earnshaw, S., Dynamics, or An Elementary Treatise on Motion, 3rd ed., Cambridge: Deighton, 1844.

    Google Scholar 

  15. Ehlers, K., Koiller, J., Montgomery, R., and Rios, P.M., Nonholonomic Systems via Moving Frames: Cartan Equivalence and Chaplygin Hamiltonization, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., vol. 232, Boston,Mass.: Birkhäuser, 2005, pp. 75–120.

    Google Scholar 

  16. Fassó, F. and Sansonetto, N., Conservation of’ moving’ energy in nonholonomic systems with affine constraints and integrability of spheres on rotating surfaces, J. Nonlinear Sci., 2016, vol. 26, no. 2, pp. 519–544.

    Article  MathSciNet  MATH  Google Scholar 

  17. Fassò, F., García-Naranjo, L.C., and Sansonetto, N., Moving Energies As First Integrals of Nonholonomic Systems with Affine Constraints, Nonlinearity, 2018, vol. 31, no. 3, pp. 755–782.

    Article  MathSciNet  MATH  Google Scholar 

  18. Fedorov, Yu.N. and Jovanović, B., Quasi-Chaplygin Systems and Nonholonomic Rigid Body Dynamics, Lett. Math. Phys., 2006, vol. 76, nos. 2–3, pp. 215–230.

    Google Scholar 

  19. Fernandez, O.E., Mestdag, T., and Bloch, A. M., A Generalization of Chaplygin’s Reducibility Theorem, Regul. Chaotic Dyn., 2009, vol. 14, no. 6, pp. 635–655.

    Article  MathSciNet  MATH  Google Scholar 

  20. García-Naranjo, L.C. and Marrero, J.C., The Geometry of Nonholonomic Chaplygin Systems Revisited, arXiv:1812.01422 (2018).

    Google Scholar 

  21. Grigoryev, Yu.A. and Tsiganov, A.V., Symbolic Software for Separation of Variables in the Hamilton–Jacobi Equation for the L-Systems, Regul. Chaotic Dyn., 2005, vol. 10, no. 4, pp. 413–422.

    Article  MathSciNet  Google Scholar 

  22. Grigoryev, Yu.A. and Tsiganov, A.V., Separation of Variables for the Generalized Hénon–Heiles System and System with Quartic Potential, J. Phys. A, 2011, vol. 44, no. 25, 255202, 9 pp.

    Google Scholar 

  23. Grigoryev, Yu.A., Sozonov, A. P., and Tsiganov, A.V., Integrability of Nonholonomic Heisenberg Type Systems, SIGMA Symmetry Integrability Geom. Methods Appl., 2016, vol. 12, Paper No. 112, 14 pp.

    MATH  Google Scholar 

  24. Guha, P. and Ghose Choudhury, A., Hamiltonization of Higher-Order Nonlinear Ordinary Differential Equations and the Jacobi Last Multiplier, Acta Appl. Math., 2011, vol. 116, no. 2, pp. 179–197.

    Article  MathSciNet  MATH  Google Scholar 

  25. Guichardet, A., Le problème de Kepler. Histoire et théorie, Paris: Éd. de l’École Polytechnique, 2012.

    MATH  Google Scholar 

  26. Levy-Leblond, J. M., The ANAIS Billiard Table, Eur. J. Phys., 1986, vol. 7, no. 4, pp. 252–258.

    Google Scholar 

  27. Marle, Ch.-M., A Property of Conformally Hamiltonian Vector Fields; Application to the Kepler Problem, J. Geom. Mech., 2012, vol. 4, no. 2, pp. 181–206.

    Article  MathSciNet  MATH  Google Scholar 

  28. Maupertuis, P. L., Accord de différentes loix de la nature qui avoient jusqu’ici paru incompatibles, in OEuvres de Maupertuis: Vol. 4, Lyon: Bruyset, 1768, pp. 3–15.

    Google Scholar 

  29. Ohsawa, T., Fernandez, O. E., Bloch, A.M., and Zenkov, D.V., Nonholonomic Hamilton–Jacobi Theory via Chaplygin Hamiltonization, J. Geom. Phys., 2011, vol. 61, no. 8, pp. 1263–1291.

    Article  MathSciNet  MATH  Google Scholar 

  30. Routh, E. J., The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies: Being Part II of a Treatise on the Whole Subject, 6th ed., New York: Dover, 1955.

    MATH  Google Scholar 

  31. Tsiganov, A.V., Canonical Transformations of the Extended Phase Space, Toda Lattices and the Stäckel Family of Integrable Systems, J. Phys. A., 2000, vol. 33, no. 22, pp. 4169–4182.

    MathSciNet  MATH  Google Scholar 

  32. Tsiganov, A.V., The Maupertuis Principle and Canonical Transformations of the Extended Phase Space, J. Nonlinear Math. Phys., 2001, vol. 8, no. 1, pp. 157–182.

    Article  MathSciNet  MATH  Google Scholar 

  33. Tsiganov, A.V., On Bi-Hamiltonian Structure of Some Integrable Systems on so∗(4), J. Nonlinear Math. Phys., 2008, vol. 15, no. 2, pp. 171–185.

    Article  MathSciNet  MATH  Google Scholar 

  34. Tsiganov, A.V., On Bi-Integrable Natural Hamiltonian Systems on Riemannian Manifolds, J. Nonlinear Math. Phys., 2011, vol. 18, no. 2, pp. 245–268.

    Article  MathSciNet  MATH  Google Scholar 

  35. Tsiganov, A.V., Integrable Euler Top and Nonholonomic Chaplygin Ball, J. Geom. Mech., 2011, vol. 3, no. 3, pp. 337–362.

    Article  MathSciNet  MATH  Google Scholar 

  36. Tsiganov, A.V., One Family of Conformally Hamiltonian Systems, Theoret. and Math. Phys., 2012, vol. 173, no. 2, pp. 1481–1497; see also: Teoret. Mat. Fiz., 2012, vol. 173, no. 2, pp. 179–196.

    Article  MathSciNet  MATH  Google Scholar 

  37. Tsiganov, A.V., One InvariantMeasure and Different Poisson Brackets for Two Non-Holonomic Systems, Regul. Chaotic Dyn., 2012, vol. 17, no. 1, pp. 72–96.

    Article  MathSciNet  MATH  Google Scholar 

  38. Tsiganov, A.V., On the Poisson Structures for the Nonholonomic Chaplygin and Veselova Problems, Regul. Chaotic Dyn., 2012, vol. 17, no. 5, pp. 439–450.

    Article  MathSciNet  MATH  Google Scholar 

  39. Tsiganov, A.V., New Variables of Separation for the Steklov–Lyapunov System, SIGMA Symmetry Integrability Geom. Methods Appl., 2012, vol. 8, Paper 012, 14 pp.

    Google Scholar 

  40. Tsiganov, A.V., On the Lie Integrability Theorem for the Chaplygin Ball, Regul. Chaotic Dyn., 2014, vol. 19, no. 2, pp. 185–197.

    Article  MathSciNet  MATH  Google Scholar 

  41. Tsiganov, A.V., Poisson Structures for Two Nonholonomic Systems with Partially Reduced Symmetries, J. Geom. Mech., 2014, vol. 6, no. 3, pp. 417–440.

    Article  MathSciNet  MATH  Google Scholar 

  42. Tsiganov, A.V., On Integrable Perturbations of Some Nonholonomic Systems, SIGMA Symmetry Integrability Geom. Methods Appl., 2015, vol. 11, Paper 085, 19 pp.

  43. Tsiganov, A.V., Bäcklund Transformations for the Nonholonomic Veselova System, Regul. Chaotic Dyn., 2017, vol. 22, no. 2, pp. 163–179.

    Article  MathSciNet  MATH  Google Scholar 

  44. Tsiganov, A.V., Integrable Discretization and Deformation of the Nonholonomic Chaplygin Ball, Regul. Chaotic Dyn., 2017, vol. 22, no. 4, pp. 353–367.

    Article  MathSciNet  MATH  Google Scholar 

  45. Turiel, F., Structures bihamiltoniennes sur le fibré cotangent, C. R. Acad. Sci. Paris. Sér. 1. Math., 1992, vol. 315, pp. 1085–1088.

    MathSciNet  MATH  Google Scholar 

  46. Tzénoff, I., Quelques formes différentes des équations générals du mouvement des systèmes matériels, Bull. Soc. Math. France, 1925, vol. 53, pp. 80–105.

    Article  MathSciNet  MATH  Google Scholar 

  47. Vershilov, A.V. and Tsiganov, A.V., On One Integrable System with a Cubic First Integral, Lett. Math. Phys., 2012, vol. 101, no. 2, pp. 143–156.

    Article  MathSciNet  MATH  Google Scholar 

  48. Weierstrass, K., Über die geodätischen Linien auf dem dreiachsigen Ellipsoid, in Mathematische Werke: Vol. 1, Berlin: Mayer & Müller, 1894, pp. 257–266.

    Google Scholar 

  49. Zengel, K., The Electromagnetic Analogy of a Ball on a Rotating Conical Turntable, Am. J. Phys., 2017, vol. 85, no. 12, pp. 901–907.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Tsiganov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiganov, A.V. Hamiltonization and Separation of Variables for a Chaplygin Ball on a Rotating Plane. Regul. Chaot. Dyn. 24, 171–186 (2019). https://doi.org/10.1134/S1560354719020035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354719020035

Keywords

MSC2010 numbers

Navigation