Skip to main content
Log in

On Stability of Thomson’s Vortex N-gon in the Geostrophic Model of the Point Bessel Vortices

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

A stability analysis of the stationary rotation of a system of N identical point Bessel vortices lying uniformly on a circle of radius R is presented. The vortices have identical intensity Γ and length scale γ−1 > 0. The stability of the stationary motion is interpreted as equilibrium stability of a reduced system. The quadratic part of the Hamiltonian and eigenvalues of the linearization matrix are studied. The cases for N = 2,..., 6 are studied sequentially. The case of odd N = 2+1 ≥ 7 vortices and the case of even N = 2n ≥ 8 vortices are considered separately. It is shown that the (2 + 1)-gon is exponentially unstable for 0 < γR<R*(N). However, this (2 + 1)-gon is stable for γRR*(N) in the case of the linearized problem (the eigenvalues of the linearization matrix lie on the imaginary axis). The even N = 2n ≥ 8 vortex 2n-gon is exponentially unstable for R > 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newton, P.K., The N-Vortex Problem: Analytical Techniques, Appl. Math. Sci., vol. 145, New York: Springer, 2001.

  2. Aref, H., Newton, P.K., Stremler, M.A., Tokieda, T., and Vainchtein, D. L., Vortex Crystals, Adv. Appl. Mech., 2013, vol. 39, pp. 1–79.

    Google Scholar 

  3. Saffman, P.G., Vortex Dynamics, Cambridge Monogr. Mech. Appl. Math., New York: Cambridge Univ. Press, 1992.

    Google Scholar 

  4. Sokolovskiy, M.A. and Verron, J., Dynamics of Vortex Structures in a Stratified Rotating Fluid, Atmos. Oceanogr. Sci. Libr., vol. 47, Cham: Springer, 2014.

  5. Borisov, A.V. and Mamaev, I. S., Mathematical Methods in the Dynamics of Vortex Structures, Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).

    Google Scholar 

  6. Kurakin, L. G., Melekhov, A. P., and Ostrovskaya, I. V., A Survey of the Stability Criteria of Thomson’s Vortex Polygons outside a Circular Domain, Bol. Soc. Mat. Mex., 2016, vol. 22, no. 2, pp. 733–744.

    Article  MathSciNet  MATH  Google Scholar 

  7. Thomson, W., Floating Magnets, Nature, 1878, vol. 18, pp. 13–14.

    Article  Google Scholar 

  8. Kelvin, W.T., Mathematical and Physical Papers: Vol. 4, Cambridge: Cambridge Univ. Press, 1910, pp. 162–164.

    Google Scholar 

  9. Thomson, J. J., On the Motion of Vortex Rings, London: Macmillan, 1883, pp. 94–108.

    Google Scholar 

  10. Havelock, T.H., The Stability of Motion of Rectilinear Vortices in Ring Formation, Philos. Mag., 1931, vol. 11, no. 70, pp. 617–633.

    Article  MATH  Google Scholar 

  11. Kurakin, L. G. and Yudovich, V. I., The Stability of Stationary Rotation of a Regular Vortex Polygon, Chaos, 2002, vol. 12, no. 3, pp. 574–595.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kurakin, L. G. and Yudovich, V. I., On the Nonlinear Stability of the Steady Rotation of a Regular Vortex Polygon, Dokl. Phys., 2002, vol. 47, no. 6, pp. 465–470; see also: Dokl. Akad. Nauk, 2002, vol. 384, no. 4, pp. 476–482.

    Article  MathSciNet  MATH  Google Scholar 

  13. Stewart, H. J., Periodic Properties of the Semi-Permanent Atmospheric Pressure Systems, Quart. Appl. Math., 1943, vol. 1, pp. 262–267.

    Article  MathSciNet  MATH  Google Scholar 

  14. Stewart, H. J., Hydrodynamic Problems Arising from the Investigation of the Transverse Circulation in the Atmosphere, Bull. Amer. Math. Soc., 1945, vol. 51, pp. 781–799.

    Article  MathSciNet  MATH  Google Scholar 

  15. Morikawa, G.K. and Swenson, E. V., Interacting Motion of Rectilinear Geostrophic Vortices, Phys. Fluids, 1971, vol. 14, no. 6, pp. 1058–1073.

    Article  Google Scholar 

  16. Routh, E. J., A Treatise on Stability of a Given State of Motion, London: McMillan, 1877.

    Google Scholar 

  17. Kurakin, L. G., Ostrovskaya, I.V., and Sokolovskiy, M.A., On the Stability of Discrete Tripole, Quadrupole, Thomson’ Vortex Triangle and Square in a Two-Layer/HomogeneousRotating Fluid, Regul. Chaotic Dyn., 2016, vol. 21, no. 3, pp. 291–334.

    Article  MathSciNet  MATH  Google Scholar 

  18. Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., The Bifurcation Analysis and the Conley Index in Mechanics, Regul. Chaotic Dyn., 2012, vol. 17, no. 5, pp. 457–478.

    Article  MathSciNet  MATH  Google Scholar 

  19. Proskuryakov, I.V., A Collection of Problems in Linear Algebra, 7th ed.,Moscow: Nauka, 1984 (Russian).

    MATH  Google Scholar 

  20. Kurakin, L. G., Stability, Resonances, and Instability of the Regular Vortex Polygons in the Circular Domain, Dokl. Phys., 2004, vol. 49, no. 11, pp. 658–661; see also: Dokl. Akad. Nauk, 2004, vol. 399, no. 1, pp. 52–55.

    Google Scholar 

  21. Kurakin, L. G. and Ostrovskaya, I.V., Nonlinear Stability Analysis of a Regular Vortex Pentagon Outside a Circle, Regul. Chaotic Dyn., 2012, vol. 17, no. 5, pp. 385–396.

    Article  MathSciNet  MATH  Google Scholar 

  22. Markeev, A.P., bration Points in Celestial Mechanics and Space Dynamics, Moscow: Nauka, 1978 (Russian).

    Google Scholar 

  23. Kolmogorov, A.N., Preservation of Conditionally Periodic Movements with Small Change in the Hamilton Function, in Stochastic Behaviour in Classical and Quantum Hamiltonian Systems (Volta Memorial Conference, Como, 1977), G. Casati, J. Ford (Eds.), Lect. Notes Phys.Monogr., vol. 93, Berlin: Springer, 1979, pp. 51–56; see also: Dokl. Akad. Nauk SSSR (N. S.), 1954, vol. 98, pp. 527–530 (Russian).

  24. Arnol’d, V. I., Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics, Russian Math. Surveys, 1963, vol. 18, no. 6, pp. 85–191; see also: Uspekhi Mat. Nauk, 1963, vol. 18, no. 6(114), pp. 91–192.

    Article  MathSciNet  MATH  Google Scholar 

  25. Moser, J. K., Lectures on Hamiltonian Systems, Mem. Amer. Math. Soc., vol. 81, Providence, R.I.: AMS, 1968.

  26. Arnol’d, V. I., Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math., vol. 60, New York: Springer, 1997.

  27. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, M. Abramowitz, I.A. Stegun (Eds.), New York: Dover, 1992.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid G. Kurakin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurakin, L.G., Ostrovskaya, I.V. On Stability of Thomson’s Vortex N-gon in the Geostrophic Model of the Point Bessel Vortices. Regul. Chaot. Dyn. 22, 865–879 (2017). https://doi.org/10.1134/S1560354717070085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354717070085

Keywords

MSC2010 numbers

Navigation