Skip to main content
Log in

Normalization in Lie algebras via mould calculus and applications

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We establish Écalle’s mould calculus in an abstract Lie-theoretic setting and use it to solve a normalization problem, which covers several formal normal form problems in the theory of dynamical systems. The mould formalism allows us to reduce the Lie-theoretic problem to a mould equation, the solutions of which are remarkably explicit and can be fully described by means of a gauge transformation group. The dynamical applications include the construction of Poincaré–Dulac formal normal forms for a vector field around an equilibrium point, a formal infinite-order multiphase averaging procedure for vector fields with fast angular variables (Hamiltonian or not), or the construction of Birkhoff normal forms both in classical and quantum situations. As a by-product we obtain, in the case of harmonic oscillators, the convergence of the quantum Birkhoff form to the classical one, without any Diophantine hypothesis on the frequencies of the unperturbed Hamiltonians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d, V. I., Kozlov, V.V., and Neǐshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed., Encyclopaedia Math. Sci., vol. 3, Berlin: Springer, 2006.

    Google Scholar 

  2. Broer, H., Formal Normal Form Theorems for Vector Fields and Some Consequences for Bifurcations in the Volume Preserving Case, in Dynamical Systems and Turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, New York: Springer, 1981, pp. 54–74.

    Chapter  Google Scholar 

  3. Broer, H., Normal Forms in Perturbation Theory, in Mathematics of Complexity and Dynamical Systems: Vols. 1–3, R.A. Meyers (Ed.), New York: Springer, 2012, pp. 1152–1171.

    Chapter  Google Scholar 

  4. Esposti, M. D., Graffi, S., and Herczynski, J., Quantization of the Classical Lie Algorithm in the Bargmann Representation, Ann. Physics, 1991, vol. 209, no. 2, pp. 364–392.

    Article  MathSciNet  MATH  Google Scholar 

  5. Écalle, J., Les fonctions résurgentes: Vols. 1–3, Paris: Publ. Math. Orsay, 1981, 1985.

    MATH  Google Scholar 

  6. Écalle, J., Six Lectures on Transseries, Analysable Functions and the Constructive Proof of Dulac’s Conjecture, in Bifurcations and Periodic Orbits of Vector Fields, D. Schlomiuk (Ed.), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 408, Dordrecht: Kluwer, 1993, pp. 75–184.

    Chapter  Google Scholar 

  7. Écalle, J. and Vallet, B., Prenormalization, Correction, and Linearization of Resonant Vector Fields or Diffeomorphisms: Prepub. Orsay, no. 32, 1995, 90 pp.

  8. Folland, G. B., Harmonic Analysis in Phase Space, Ann. of Math. Stud., vol. 122, Princeton,N.J.: Princeton Univ. Press, 1989.

  9. Graffi, S. and Paul, Th., The Schrödinger Equation and Canonical Perturbation Theory, Comm. Math. Phys., 1987, vol. 108, no. 1, pp. 25–40.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kato, T., Perturbation Theory of Linear Operators, 2nd ed., Classics Math., vol. 132, Berlin: Springer, 1995.

  11. Lochak, P. and Meunier, C., Multiphase Averaging for Classical Systems: With Applications to Adiabatic Theorems, Appl. Math. Sci., vol. 72, New York: Springer, 1988.

  12. Menous, F., Formal Differential Equations and Renormalization, in Renormalization and Galois Theories, A. Connes, F. Fauvet, J.-P. Ramis (Eds.), IRMA Lect. Math. Theor. Phys., vol. 15, Zürich: Eur. Math. Soc., 2009, pp. 229–246.

    Chapter  Google Scholar 

  13. Menous, F., From Dynamical Systems to Renormalization, J. Math. Phys., 2013, vol. 54, no. 9, 092702, 24 pp.

    Google Scholar 

  14. Marco, J.-P. and Sauzin, D., Stability and Instability for Gevrey Quasi-Convex Near-Integrable Hamiltonian Systems, Publ. Math. Inst. Hautes Études Sci., 2002, no. 96, pp. 199–275.

    Article  MathSciNet  MATH  Google Scholar 

  15. Murua, A. and Sanz-Serna, J.M., Word Series for Dynamical Systems and Their Numerical Integrators, Found. Comput. Math., 2017, vol. 17, no. 3, pp. 675–712.

    Article  MathSciNet  MATH  Google Scholar 

  16. Murua, A. and Sanz-Serna, J.M., Computing Normal Forms and Formal Invariants of Dynamical Systems by Means of Word Series, Nonlinear Anal., 2016, vol. 138, pp. 326–345.

    Article  MathSciNet  MATH  Google Scholar 

  17. Paul, T. and Sauzin, D., Normalization in Banach Scale Lie Algebras via Mould Calculus and Applications, arXiv:1607.00780v2 (2017).

    MATH  Google Scholar 

  18. Reed, M. and Simon, B., Methods of Modern Mathematical Physics: Vol. 1. Functional Analysis, New York: Acad. Press, 1972.

    MATH  Google Scholar 

  19. Reed, M. and Simon, B., Methods of Modern Mathematical Physics: Vol. 3. Scattering Theory, New York: Acad. Press, 1979.

    MATH  Google Scholar 

  20. Reutenauer, Ch., Free Lie Algebras, London Math. Soc. Monogr. (N. S.), vol. 7, New York: Oxford Univ. Press, 1993.

    Google Scholar 

  21. Sauzin, D., Mould Expansions for the Saddle-Node and Resurgence Monomials, in Renormalization and Galois Theories, A. Connes, F. Fauvet, J.-P. Ramis (Eds.), IRMA Lect. Math. Theor. Phys., vol. 15, Zürich: Eur. Math. Soc., 2009, pp. 83–163.

    Chapter  Google Scholar 

  22. Thibon, J.-Y., Noncommutative Symmetric Functions and Combinatorial Hopf Algebras, in Asymptotics in Dynamics, Geometry and PDEs; Generalized Borel Summation: Vol. 1, O. Costin, F. Fauvet, F. Menous, D. Sauzin (Eds.), CRM Ser., vol. 12, Pisa: Ed. Norm., 2011, pp. 219–258.

    Chapter  Google Scholar 

  23. von Waldenfels, W., Zur Charakterisierung Liescher Elemente in freien Algebren, Arch. Math. (Basel), 1966, vol. 17, pp. 44–48.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, T., Sauzin, D. Normalization in Lie algebras via mould calculus and applications. Regul. Chaot. Dyn. 22, 616–649 (2017). https://doi.org/10.1134/S1560354717060041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354717060041

Keywords

MSC2010

Navigation