Skip to main content
Log in

Dynamics and control of an omniwheel vehicle

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

A nonholonomic model of the dynamics of an omniwheel vehicle on a plane and a sphere is considered. A derivation of equations is presented and the dynamics of a free system are investigated. An explicit motion control algorithm for the omniwheel vehicle moving along an arbitrary trajectory is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, J. and Dias, J., Design and Control of a Spherical Mobile Robot, J. Syst. Control Eng., 2003, vol. 217, pp. 457–467.

    Google Scholar 

  2. Asama, H., Sato, M., Bogoni, L., Kaetsu, H., Mitsumoto, A., and Endo, I., Development of an Omni-Directional Mobile Robot with 3 DOF Decoupling Drive Mechanism, in Proc. of the 1995 IEEE Internat. Conf. on Robotics and Automation (Nagoya, Japan, 21–27 May 1995): Vol. 2, pp. 1925–1930.

  3. Ashmore, M. and Barnes, N., Omni-Drive Robot Motion on Curved Paths: The Fastest Path between Two Points Is Not a Straight-Line, in AI 2002: Advances in Artificial Intelligence Lecture Notes in Comput. Sci., vol. 2557, Berlin: Springer, 2002, pp. 225–236.

    Chapter  Google Scholar 

  4. Bizyaev, I. A., Nonintegrability and Obstructions to the Hamiltonianization of a Nonholonomic Chaplygin Top, Dokl. Math., 2014, vol. 90, no. 2, pp. 631–634; see also: Dokl. Akad. Nauk, 2014, vol. 458, no. 4, pp. 398–401.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bizyaev, I. A., Borisov, A.V., and Mamaev, I. S., The Dynamics of Nonholonomic Systems Consisting of a Spherical Shell with a Moving Rigid Body Inside, Regul. Chaotic Dyn., 2014, vol. 19, no. 2, pp. 198–213.

    Article  MATH  MathSciNet  Google Scholar 

  6. Bolotin, S. V. and Popova, T. V., On the Motion of a Mechanical System inside a Rolling Ball, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 159–165.

    Article  MATH  MathSciNet  Google Scholar 

  7. Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Rolling of a Ball without Spinning on a Plane: The Absence of an Invariant Measure in a System with a Complete Set of Integrals, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 571–579; see also: Nelin. Dinam., 2012, vol. 8, no. 3, pp. 605–616.

    Article  MATH  MathSciNet  Google Scholar 

  8. Borisov, A.V., Kazakov, A.O., and Sataev, I.R., The Reversal and Chaotic Attractor in the Nonholonomic Model of Chaplygin’s Top, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 718–733.

    Article  MathSciNet  Google Scholar 

  9. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How To Control Chaplygin’s Sphere Using Rotors, Regul. Chaotic Dyn., 2012, vol. 17, nos. 3–4, pp. 258–272; see also: Nelin. Dinam., 2012, vol. 8, no. 2, pp. 289–307.

    Article  MATH  MathSciNet  Google Scholar 

  10. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How To Control the Chaplygin Ball Using Rotors: 2, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 144–158; see also: Nelin. Dinam., 2013, vol. 9, no. 1, pp. 59–76.

    Article  MATH  MathSciNet  Google Scholar 

  11. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., An Omni-Wheel Vehicle on a Plane and a Sphere, Nelin. Dinam., 2011, vol. 7, no. 4, pp. 785–801 (Russian).

    Google Scholar 

  12. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., The Problem of Drift and Recurrence for the Rolling Chaplygin Ball, Regul. Chaotic Dyn., 2013, vol. 18, no. 6, pp. 832–859.

    Article  MATH  MathSciNet  Google Scholar 

  13. Borisov, A.V. and Mamaev, I. S., Dynamics of a Rigid Body: Hamiltonian Methods, Integrability, Chaos, 2nd ed., Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).

    Google Scholar 

  14. Borisov, A. V. and Mamaev, I. S., The Dynamics of the Chaplygin Ball with a Fluid-Filled Cavity, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 490–496; see also: Nelin. Dinam., 2012, vol. 8, no. 1, pp. 103–111.

    Article  MATH  MathSciNet  Google Scholar 

  15. Borisov, A. V. and Mamaev, I. S., Topological Analysis of an Integrable System Related to the Rolling of a Ball on a Sphere, Regul. Chaotic Dyn., 2013, vol. 18, no. 4, pp. 356–371; see also: Nelin. Dinam., 2012, vol. 8, no. 5, pp. 957–975.

    Article  MATH  MathSciNet  Google Scholar 

  16. Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 2013, vol. 8, no. 3, pp. 277–328; see also: Nelin. Dinam., 2013, vol. 9, no. 2, pp. 141–202.

    Article  MathSciNet  Google Scholar 

  17. Borisov, A.V. and Tsygvintsev, A.V., Kowalewski Exponents and Integrable Systems of Classic Dynamics: 1, 2, Regul. Chaotic Dyn., 1996, vol. 1, no. 1, pp. 15–37 (Russian).

    MathSciNet  Google Scholar 

  18. Borisov, A. V. and Tsygvintsev, A.V., Kovalevskaya’s Method in Rigid Body Dynamics, J. Appl. Math. Mech., 1997, vol. 61, no. 1, pp. 27–32; see also: Prikl. Mat. Mekh., 1997, vol. 61, no. 1, pp. 30–36.

    Article  MATH  MathSciNet  Google Scholar 

  19. Campion, G., Bastin, G., and d’Andréa-Novel, B., Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots, IEEE Trans. Robot. Autom., 1996, vol. 12, no. 1, pp. 47–62.

    Article  Google Scholar 

  20. Ferrière, L., Campion, G., and Raucent, B., ROLLMOBS, a New Drive System for Omnimobile Robots, Robotica, 2001, vol. 19, pp. 1–9.

    Article  Google Scholar 

  21. Fedorov, Yu.N. and Kozlov, V.V., Various Aspects of n-Dimensional Rigid Body Dynamics, Amer. Math. Soc. Transl. Ser. 2, 1995, vol. 168, pp. 141–171.

    MathSciNet  Google Scholar 

  22. Fedorov, Yu.N., Maciejewski, A. J., and Przybylska, M., The Generalized Euler — Poinsot Rigid Body Equations: Explicit Elliptic Solutions, J. Phys. A, 2013, vol. 46, no. 41, 415201, 26 pp.

    Article  MathSciNet  Google Scholar 

  23. García-Naranjo, L.C., Maciejewski, A. J., Marrero, J.C., and Przybylska, M., The Inhomogeneous Suslov Problem, Phys. Lett. A, 2014, vol. 378, nos. 32–33, pp. 2389–2394.

    Article  MATH  Google Scholar 

  24. García-Naranjo, L.C., Marrero, J.C., Non-Existence of an Invariant Measure for a Homogeneous Ellipsoid Rolling on the Plane, Regul. Chaotic Dyn., 2013, vol. 18, no. 4, pp. 372–379.

    Article  MATH  MathSciNet  Google Scholar 

  25. Gonchenko, A. S., Gonchenko, S.V., and Kazakov, A.O., Richness of Chaotic Dynamics in the Nonholonomic Model of Celtic Stone, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 521–538.

    Article  MATH  MathSciNet  Google Scholar 

  26. Karavaev, Yu. L. and Kilin, A.A., The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform, Regul. Chaotic Dyn., 2015, vol. 20, no. 2, pp. 134–152.

    Article  MathSciNet  Google Scholar 

  27. Kazakov, A. O., Strange Attractors and Mixed Dynamics in the Problem of an Unbalanced Rubber Ball Rolling on a Plane, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 508–520.

    Article  MATH  MathSciNet  Google Scholar 

  28. Kilin, A.A. and Karavaev, Yu. L., The Kinematic Control Model for a Spherical Robot with an Unbalanced Internal Omniwheel Platform, Nelin. Dinam., 2014, vol. 10, no. 4, pp. 497–511 (Russian).

    Google Scholar 

  29. Kilin, A.A., Karavaev, Yu. L., and Klekovkin, A. V., Kinematic Control of a High Manoeuvrable Mobile Spherical Robot with Internal Omni-Wheeled Platform, Nelin. Dinam., 2014, vol. 10, no. 1, pp. 113–126 (Russian).

    Google Scholar 

  30. Lobas, L. G., Nonholonomic Models of Vehicles, Kiev: Naukova Dumka, 1986 (Russian).

    MATH  Google Scholar 

  31. Martynenko, Yu. G., Stability of Steady Motions of a Mobile Robot with Roller-Carrying Wheels and a Displaced Centre of Mass, J. Appl. Math. Mech., 2010, vol. 74, no. 4, pp. 436–442; see also: Prikl. Mat. Mekh., 2010, vol. 74, no. 4, pp. 610–619.

    Article  MATH  MathSciNet  Google Scholar 

  32. Martynenko, Yu. G. and Formal’skii, A. M., On the Motion of a Mobile Robot with Roller-Carrying Wheels, J. Comput. Sys. Sc. Int., 2007, vol. 46, no. 6, pp. 976–983; see also: Izv. Ross. Akad. Nauk. Teor. Sist. Upr., 2007, no. 6, pp. 142–149.

    Article  MATH  MathSciNet  Google Scholar 

  33. Muir, P.F. and Neuman, C.P., Kinematic Modeling for Feedback Control of an Omnidirectional Wheeled Mobile Robot, in Autonomous Robot Vehicles, I. J. Cox, G.T. Wilfong (Eds.), New York: Springer, 1990, pp. 25–31.

    Chapter  Google Scholar 

  34. Nagarajan, U., Mampetta, A., Kantor, G.A., and Hollis, R. L., State Transition, Balancing, Station Keeping, and Yaw Control for a Dynamically Stable Single Spherical Wheel Mobile Robot, IEEE Internat. Conf. on Robotics and Automation (ICRA) (Kobe, Japan, 2009), pp. 998–1003.

  35. Nagarajan, U., Kantor, G., and Hollis, R. L., Trajectory Planning and Control of an Underactuated Dynamically Stable Single Spherical Wheeled Mobile Robot, IEEE Internat. Conf. on Robotics and Automation (ICRA) (Kobe, Japan, 2009), pp. 3743–3748.

  36. Ostrowski, J.P., The Mechanics and Control of Undulatory Robotic Locomotion: Ph.D.Thesis, Pasadena, CA, California Institute of Technology, 1995. 149 p.

    Google Scholar 

  37. Ostrowski, J.P., Desai, J.P., and Kumar, V., Optimal Gait Selection for Nonholonomic Locomotion Systems, Internat. J. Robotics Res., 2000, vol. 19, no. 3, pp. 225–237.

    Article  Google Scholar 

  38. Svinin, M., Morinaga, A., and Yamamoto, M., On the Dynamic Model and Motion Planning for a Spherical Rolling Robot Actuated by Orthogonal Internal Rotors, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 126–143.

    Article  MATH  MathSciNet  Google Scholar 

  39. Tatarinov, Ya.V., Equations of Classical Mechanics in New Form, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 2003, no. 3, pp. 67–76 (Russian).

    Google Scholar 

  40. Tsiganov, A.V., On the Lie Integrability Theorem for the Chaplygin Ball, Regul. Chaotic Dyn., 2014, vol. 19, no. 2, pp. 185–197.

    Article  MATH  MathSciNet  Google Scholar 

  41. Tsiganov, A.V., One Invariant Measure and Different Poisson Brackets for Two Non-Holonomic Systems, Regul. Chaotic Dyn., 2012, vol. 17, no. 1, pp. 72–96.

    Article  MATH  MathSciNet  Google Scholar 

  42. Watanabe, K., Shiraishi, Y., Tzafestas, S. G., Tang, J., Fukuda, T., Feedback Control of an Omnidirectional Autonomous Platform for Mobile Service Robots, J. Intell. Robot. Syst., 1998, vol. 22, nos. 3–4, pp. 315–330.

    Article  Google Scholar 

  43. Yoon, J.-C., Ahn, S.-S., and Lee, Y.-J., Spherical Robot with New Type of Two-Pendulum Driving Mechanism, Proc. 15th IEEE Internat. Conf. on Intelligent Engineering Systems (INES) (Poprad, High Tatras, Slovakia, 2011), pp. 275–279.

  44. Zhan, Q., Cai, Y., and Yan, C., Design, Analysis and Experiments of an Omni-Directional Spherical Robot, IEEE Internat. Conf. on Robotics and Automation (ICRA) (Shanghai, China, 2011), pp. 4921–4926.

  45. Zobova, A.A., Application of Laconic Forms of the Equations of Motion in the Dynamics of Nonholonomic Mobile Robots, Nelin. Dinam., 2011, vol. 7, no. 4, pp. 771–783 (Russian).

    Google Scholar 

  46. Zobova, A.A. and Tatarinov, Ya.V., The Dynamics of an Omni-Mobile Vehicle, J. Appl. Math. Mech., 2009, vol. 73, no. 1, pp. 8–15; see also: Prikl. Mat. Mekh., 2009, vol. 73, no. 1, pp. 13–22.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Borisov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, A.V., Kilin, A.A. & Mamaev, I.S. Dynamics and control of an omniwheel vehicle. Regul. Chaot. Dyn. 20, 153–172 (2015). https://doi.org/10.1134/S1560354715020045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354715020045

MSC2010 numbers

Keywords

Navigation