Skip to main content
Log in

Simultaneous separation for the Neumann and Chaplygin systems

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The Neumann and Chaplygin systems on the sphere are simultaneously separable in variables obtained from the standard elliptic coordinates by the proper Bäcklund transformation. We also prove that after similar Bäcklund transformations other curvilinear coordinates on the sphere and on the plane become variables of separation for the system with quartic potential, for the Hénon-Heiles system and for the Kowalevski top. This allows us to speak about some analog of the hetero Bäcklund transformations relating different Hamilton-Jacobi equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, M. R., Harnad, J., and Previato, E., Isospectal Hamiltonian Flows in Finite and Infinite Dimensions, Commun. Math. Phys., 1988, vol. 117, no. 3, pp. 451–500.

    Article  MATH  MathSciNet  Google Scholar 

  2. Adams, M. R., Harnad, J., and Hurtubise, J., Darboux Coordinates and Liouville-Arnold Integration in Loop Algebras, Commun. Math. Phys., 1993, vol. 155, no. 2, pp. 385–413.

    Article  MATH  MathSciNet  Google Scholar 

  3. Babelon, O. and Talon, M., Separation of Variables for the Classical and Quantum Neumann Model, Nucl. Phys. B., 1992, vol. 379, nos. 1–2, pp. 321–339.

    Article  MathSciNet  Google Scholar 

  4. Bartocci, C., Falqui, G., and Pedroni, M., A Geometric Approach to the Separability of the Neumann — Rosochatius System, Differential Geom. Appl., 2004, vol 21, no. 3, pp. 349–360.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bellon, M.P. and Talon, M., Spectrum of the Quantum Neumann Model, Phys. Lett. A, 2005, vol. 337, nos. 4–6, pp. 360–368.

    Article  MATH  Google Scholar 

  6. Bobenko, A. I. and Suris, Yu. B., Discrete Differential Geometry: Integrable Structure, Grad. Stud. Math., vol. 98, Providence, R.I.: AMS, 2008.

    Book  Google Scholar 

  7. Boll, R., Petrera, M., and Suris, Yu. B., Multi-Time Lagrangian 1-Forms for Families of Bäcklund Transformations: Toda-Type Systems, J. Phys. A, 2013, vol. 46, no. 27, 275204, 26 pp.

    Google Scholar 

  8. Bolsinov, A.V. and Borisov, A.V., Compatible Poisson Brackets on Lie Algebra, Math. Notes, 2002, vol. 72, nos. 1–2, pp. 10–30; see also: Mat. Zametki, 2002, vol. 72, no. 1, pp. 11–34.

    Article  MATH  MathSciNet  Google Scholar 

  9. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Multiparticle Systems. The Algebra of Integrals and Integrable Case, Regul. Chaotic Dyn., 2009, vol. 14, no. 1, pp. 18–41.

    Article  MATH  MathSciNet  Google Scholar 

  10. Chaplygin, S.A., A New Particular Solution of the Problem of the Motion of a Rigid Body in a Liquid, Trudy Otdel. Fiz. Nauk Obsh. Liub. Est., 1903, vol. 11, no. 2, pp. 7–10 (Russian).

    Google Scholar 

  11. Dullin, H.R., Richter, P. H., Veselov, A.P., and Waalkens, H., Actions of the Neumann Systems via Picard — Fuchs Equations, Phys. D, 2001, vol. 155, nos. 3–4, pp. 159–183.

    Article  MATH  MathSciNet  Google Scholar 

  12. Fordy, A.P., The Hénon-Heiles System Revisited, Phys. D, 1991, vol. 52, nos. 2–3, pp. 204–210.

    Article  MATH  MathSciNet  Google Scholar 

  13. Grigoryev, Yu.A. and Tsiganov, A.V., Separation of Variables for the Generalized Hénon-Heiles System and System with Quartic Potential, J. Phys. A, 2011, vol. 44, no. 25, 255202, 9 pp.

    Google Scholar 

  14. Grigoryev, Yu.A., Khudobakhshov, V.A., and Tsiganov, A.V., Separation of Variables for Some Systems with a Fourth-Order Integral of Motion, Theoret. and Math. Phys., 2013, vol. 177, no. 3, pp. 1680–1692; see also: Teoret. Mat. Fiz., 2013, vol. 177, no. 3, pp. 468–481.

    Article  MATH  MathSciNet  Google Scholar 

  15. Guillemin, V. and Sternberg, Sh., Symplectic Techniques in Physics, Cambridge: Cambridge Univ. Press, 1984.

    MATH  Google Scholar 

  16. Gurarie, D., Quantized Neumann Problem, Separable Potentials on S n and the Lamé Equation, J. Math. Phys., 1995, vol. 36, no. 10, pp. 5355–5391.

    Article  MATH  MathSciNet  Google Scholar 

  17. Jacobi, C.G. J., Vorlesungen über Dynamik, 2nd ed., Berlin: Reimer, 1884.

    Google Scholar 

  18. Tsiganov, A.V. and Khudobakhshov, V.A., Integrable Systems on the Sphere Associated with Genus Three Algebraic Curves, Regul. Chaotic Dyn., 2011, vol. 16, nos. 3–4, pp. 396–414.

    Article  MATH  MathSciNet  Google Scholar 

  19. Kuznetsov, V. B., Simultaneous Separation for the Kowalevski and Goryachev -Chaplygin Gyrostats, J. Phys. A, 2002, vol. 35, no. 30, pp. 6419–6430.

    Article  MATH  MathSciNet  Google Scholar 

  20. Kuznetsov, V. and Vanhaecke, P., Bäcklund Transformations for Finite-Dimensional Integrable Systems: A Geometric Approach, J. Geom. Phys., 2002, vol. 44, no. 1, pp. 1–40.

    Article  MATH  MathSciNet  Google Scholar 

  21. Lichnerowicz, A., Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry, 1977, vol. 12, no. 2, pp. 253–300.

    MATH  MathSciNet  Google Scholar 

  22. Li, Y.Ch. and Yurov, A., Lie — Bäcklund-Darboux Transformations, Surveys of Modern Mathematics, vol. 8, Somerville, Mass.: Internat. Press, 2014

    MATH  Google Scholar 

  23. Magri, F., Eight Lectures on Integrable Systems, Lecture Notes in Phys., vol. 495, Berlin: Springer, 1997, pp. 256–296.

    Google Scholar 

  24. Mumford, D., Tata Lectures on Theta: 2. Jacobian Theta Functions and Differential Equations, Progr. Math., vol. 43, Boston,Mass.: Birkhäuser, 1984.

    Google Scholar 

  25. Moser, J., Geometry of Quadrics and Spectral Theory, in The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), New York: Springer, 1980, pp. 147–188.

    Chapter  Google Scholar 

  26. Moser, J., Various Aspects of Integrable Hamiltonian Systems, in Dynamical Systems (C.I.M.E. Summer School, Bressanone, 1978), Progr. Math., vol. 8, Boston,Mass.: Birkhäuser, 1980, pp. 233–289.

    Google Scholar 

  27. Neumann, C., De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur, J. Reine Angew. Math., 1859, vol. 56, pp. 46–63.

    Article  MATH  Google Scholar 

  28. Ravoson, V., Gavrilov, L., and Caboz, R., Separability and Lax Pairs for Hénon-Heiles System, J. Math. Phys., 1993, vol. 34, no. 6, pp. 2385–2393.

    Article  MATH  MathSciNet  Google Scholar 

  29. Rogers, C. and Schief, W.K., Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge Texts Appl. Math., Cambridge: Cambridge Univ. Press, 2002.

    Book  Google Scholar 

  30. Romeiras, F. J., Separability and Lax Pairs for the Two-Dimensional Hamiltonian System with a Quartic Potential, J. Math. Phys., 1995, vol. 36, no. 7, pp. 3559–3565.

    Article  MATH  MathSciNet  Google Scholar 

  31. Rosochatius, E., Über die Bewegung eines Punktes, Inaugural Dissertation, Univ. Göttingen, 1877.

    Google Scholar 

  32. Sklyanin, E.K., Separation of Variables: New Trends, Progr. Theoret. Phys. Suppl., 1995, vol. 118, pp. 35–60.

    Article  MathSciNet  Google Scholar 

  33. Tempesta, P. and Tondo, G., Generalized Lenard Chains, Separation of Variables, and Superintegrability, Phys. Rev. E, 2012, vol. 85, no. 4, 046602, 11 pp.

    Article  Google Scholar 

  34. Tsiganov, A.V., On the Steklov — Lyapunov Case of the Rigid Body Motion, Regul. Chaotic Dyn., 2004, vol. 9, no. 2, pp. 77–91.

    Article  MATH  MathSciNet  Google Scholar 

  35. Tsiganov, A.V., Toda Chains in the Jacobi Method, Theoret. and Math. Phys., 2004, vol. 139, no. 2, pp. 636–653; see also: Teoret. Mat. Fiz., 2004, vol. 139, no. 2, pp. 225–244.

    Article  MATH  MathSciNet  Google Scholar 

  36. Tsiganov, A.V., On the Generalized Chaplygin System, J. Math. Sci. (N. Y.), 2010, vol. 168, no. 6, pp. 901–911; see also: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI), 2010, vol. 374, pp. 21, 250–267, 272.

    Article  MATH  MathSciNet  Google Scholar 

  37. Tsiganov, A.V., New Variables of Separation for Particular Case of the Kowalevski Top, Regul. Chaotic Dyn., 2010, vol. 15, no. 6, pp. 657–667.

    Article  MathSciNet  Google Scholar 

  38. Tsiganov, A.V., On Bi-Integrable Natural Hamiltonian Systems on Riemannian Manifolds, J. Nonlinear Math. Phys., 2011, vol. 18, no. 2, pp. 245–268.

    Article  MATH  MathSciNet  Google Scholar 

  39. Tsiganov, A.V., On Natural Poisson Bivectors on the Sphere, J. Phys. A, 2011, vol. 44, no. 10, 105203, 21 pp.

    Google Scholar 

  40. Tsiganov, A.V., New Variables of Separation for the Steklov — Lyapunov System, SIGMA Symmetry Integrability Geom. Methods Appl., 2012, vol. 8, Paper 012, 14 pp.

  41. Turiel, F.-J., Structures bihamiltoniennes sur le fibré cotangent, C. R. Acad. Sci. Paris Sér. 1 Math., 1992, vol. 315, no. 10, pp. 1085–1088.

    MATH  MathSciNet  Google Scholar 

  42. Wojciechowski, S., The Analogue of the Bäcklund Transformation for Integrable Many-Body Systems, J. Phys. A, 1982, vol. 15, no. 12, L653–L657.

    Article  MathSciNet  Google Scholar 

  43. Wojciechowski, S., Integrable One-Particle Potentials Related to the Neumann System and the Jacobi Problem of Geodesic Motion on an Ellipsoid, Phys. Lett. A, 1985, vol. 107, no. 3, pp. 106–111.

    Article  MATH  MathSciNet  Google Scholar 

  44. Zullo, F., Bäcklund Transformations and Hamiltonian Flows, J. Phys. A, 2013, vol. 46, no. 14, 145203, 16 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Tsiganov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiganov, A.V. Simultaneous separation for the Neumann and Chaplygin systems. Regul. Chaot. Dyn. 20, 74–93 (2015). https://doi.org/10.1134/S1560354715010062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354715010062

MSC2010 numbers

Keywords

Navigation