Skip to main content
Log in

Dispersion Polymerization of Methyl Methacrylate Using Poly(vinyl acetate/vinyl propionate) Based Copolymers as Stabilizers in Supercritical Carbon Dioxide

  • POLYMERIZATION
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Carbon dioxide is a well-known green solvent, and can be used instead of some organic solvent to prepare the polymer products. On the basis of its poor solubility, dispersion polymerization can be adopted to produce the polymer products in industry. Thus, low price, easily available stabilizers with good stabilization effect will be a must. In this paper, we are committed to designing and synthesizing stabilizers with these characteristics. Firstly, thiol ethanol is used as the chain-transfer agent to control the copolymerization of vinyl acetate/vinyl propionate, and the homopolymers or copolymers with the hydroxyl group at the chain terminal are obtained. These homopolymers or copolymers are then functionalized to prepare the stabilizers with methacrylate groups. The results indicate that these stabilizers can effectively control the dispersion polymerization of methyl methacrylate in supercritical carbon dioxide. The proportion of structural units in the copolymer and the concentration of stabilizer or initiator obviously affect the conversion percentage of methyl methacrylate and the molecular weight of polymers. The maximum conversion percentage of methyl methacrylate and the molecular weight of poly(methyl methacrylate) can reach 93%, and 56000 Da, respectively. SEM images show that most of the samples are free-flowing powders with a spherical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. Hamid, M. D. Miara, Z. Kalboussi, D. Grauzdytė, D. Povilaitis, P. R. Venskutonis, and F. Maggi, Ind. Crops. Prod. 111, 768 (2018).

    Article  Google Scholar 

  2. X. Xin, Q. Q. Liu, C. X. Chen, Y. X. Guan, and S. J. Yao, J. Appl. Polym. Sci. 133, 43644 (2016).

    Article  Google Scholar 

  3. M. Scharfenberg, J. Hilf, and H. Frey, Adv. Funct. Material. 28, 1704302(2018).

  4. Y. Youn, M. Cha, M. Kwon, J. Park, Y. Seo, and H. Lee, Korean J. Chem. Eng. 33, 1712 (2016).

    Article  CAS  Google Scholar 

  5. M. S. Duyar, C. Tsai, J. Snider, J. A. Singh, A. Gallo, J. S. Yoo, A. J. Medford, F. Abild-Pedersen, F. Studt, J. Kibsgaard, S. F. Bent, J. K. Nørskov, and T. F. Jaramillo, Angew. Chem. Int. Edit. 57, 15045 (2018).

    Article  CAS  Google Scholar 

  6. V. K. Chidara, S. K. Boopathi, N. Hadjichristidis, Y. Gnanou, and X. Feng, Macromolecules 54, 2711 (2021).

    Article  CAS  Google Scholar 

  7. M. L. O’Neill, Q. Cao, M. Fang, K. P. Johnston, S. P. Wilkinson, C. D. Smith, J. L. Kerschner, and S. H. Jureller, Ind. Eng. Chem. Res. 37, 3067 (1998).

    Article  Google Scholar 

  8. J. L. Kendall, D. A. Canelas, J. L. Young, and J. M. DeSimone, Chem. Rev. 99, 543 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. H. Shiho and J. M. DeSimone, Macromolecules 34,1198 (2001).

    Article  CAS  Google Scholar 

  10. P. F. Oliveira, R. A. F. Machado, D. Barth, and E. D. Acosta, Chem. Eng. Proc. 103, 46 (2016).

    Article  CAS  Google Scholar 

  11. W. Wang, A. Naylor, and S. M. Howdle, Macromolecules 36, 5424 (2003).

    Article  CAS  Google Scholar 

  12. R. Parilti, A. Castañon, M. Lansalot, F. D’Agosto, C. Jérôme, and S. M. Howdle, Polym. Chem. 10, 5760 (2019,).

  13. A. Xu, Q. Lu, Z. Huo, J. Ma, B. Geng, U. Azhar, L. Zhang, and S. Zhang, RSC Adv. 7, 51612 (2017).

    Article  CAS  Google Scholar 

  14. A. Alzahrani, D. Zhou, R. P. Kuchel, P. B. Zetterlund, and F. Aldabbagh, Polym. Chem. 10, 2658 (2019).

    Article  CAS  Google Scholar 

  15. M. Okubo, S. Fujii, H. Maenaka, and H. Minami, Colloid Polym. Sci. 281, 964 (2003).

    Article  CAS  Google Scholar 

  16. H. Minami, A. Tanaka, Y. Kagawa, and M. Okubo, J. Polym. Sci. Part A: Polym. Chem. 50, 2578 (2012).

    Article  CAS  Google Scholar 

  17. X. H. Wang, L. Q. Cao, L. J. Zhang, and J. D. Wang, Polym. Adv. Technol. 23, 529 (2012).

    Article  CAS  Google Scholar 

  18. S. Zhang, S. Wan, Y. Bian, M. Xue, S. Guo, and W. Wu, J. Appl. Polym. Sci. 139, 52140 (2022).

    Article  CAS  Google Scholar 

  19. L. Bao, S. Fang, D. Hu, L. Zhao, W. Yuan, and T. Liu, J. Supercrit. Fluid 127, 129 (2017).

    CAS  Google Scholar 

  20. D. Hu; S. Sun; P. Yuan, L. Zhao, and T. Liu, J. Phys. Chem. B 119, 3194 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. E. J. Park, A. P. Richez, N. A. Birkin, H. Lee, N. Arrowsmith, K. J. Thurecht, and S. M. Howdle, Polymer 52, 5403 (2011).

    Article  CAS  Google Scholar 

  22. N. A. Birkin, O. J. Wildig, and S. M. Howdle, Polym. Chem. 4, 3791 (2013).

    Article  CAS  Google Scholar 

  23. M. Arabmotlagh, S. Bachmaier, F. Geiger, and M. Rauschmann, J. Biomed. Mater. Res. 102, 1613 (2014).

    Article  Google Scholar 

  24. A. Knyazev, A. Krupin, A. Gubaidullin, and Yu. Galyametdinov, Acta Crystallogr., Sect. B 75, 570 (2019).

    Article  CAS  Google Scholar 

  25. K. Kortsen, H. R Fowler, P. L. Jacob, E. Krumins, J. C. Lentz, M. R. A. Souhil, V. Taresco, and S. M. Howdle, Eur. Polym. J. 168, 111108 (2022).

  26. A. Xu, Q. Lu, Z. Huo, J. Ma, B. Geng, U. Azhar, L. Zhang, and S. Zhang, RSC Adv. 7, 51612 (2017).

    Article  CAS  Google Scholar 

  27. P. D. Pham, S. Monge, V. Lapinte, Y. Raoul, and J. J. Robin, Eur. Polym. J. 95, 491 (2017).

    Article  CAS  Google Scholar 

  28. H. Lee, E. Terry, M. Zong, N. Arrowsmith, S. Perrier, K. J. Thurecht, and S. M. Howdle, J. Am. Chem. Soc. 130, 12242 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is financially supported by the Ningxia Colleges and Universities Scientific Research Projects (NGY2020061), the Ningxia Key R&D Program (2019BFG2018) and the National Natural Science Foundation of China (21564001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoucun Zhang.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoucun Zhang, Wang, S., Bian, Y. et al. Dispersion Polymerization of Methyl Methacrylate Using Poly(vinyl acetate/vinyl propionate) Based Copolymers as Stabilizers in Supercritical Carbon Dioxide. Polym. Sci. Ser. B 65, 409–418 (2023). https://doi.org/10.1134/S1560090423701154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090423701154

Navigation