Skip to main content
Log in

A New Approach to the Synthesis of Poly[Pyrrole-co-Vanillin] Semiconductor Polymer Doped with FeCl3

  • FUNCTIONAL POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Conductive polymer-based applications offer several advantages, such as low cost, simple manufacturing procedures, flexibility, and other desirable properties. However, the low viscosity and solubility of these polymers make it challenging to produce layers using industrial techniques. Some commonly used conjugated conductive organic polymers include polyacetylene, polythiophene, polypyrrole, and polyaniline, among others. To expand their potential in further applications, new copolymers of vanillin and pyrrole were synthesized and characterized using various techniques, such as NMR, FTIR, UV, TGA, and electrical characterization. The optical properties of these copolymers were studied after doping using oxidation-reduction reactions with FeCl3 to understand their redox behavior. The energy gap of the studied polymers was calculated and found to increase with the oxidation agent doping according to their oxidation potential. The cationic copolymer with Maghnite-H+ had an energy gap of 0.92 eV, while the copolymer doped with FeCl3 had an energy gap of 1.13 eV. This analysis clearly demonstrates that PPHMB is a semiconducting polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Y. Shi, L. Peng, Y. Ding, Y. Zhao, and G. Yu, Chem. Soc. Rev. 44, 6684 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. I. Y. Sapurina and M. Shishov, New Polymers for Special Applications, Ed. by A. De Souza Gomes (IntechOpen, 2012).

    Google Scholar 

  3. D. Parajuli, N. Murali, D. KC, B. Karki, K. Samatha, A. A. Kim, M. Park, and B. Pant, Polymers 14, 3433 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Deng, S. Bhatnagar, S. He, N. Ahmad, A. Rahaman, J. Gao, J. Narang, I. Khalifa, and A. Nag, Nanomaterials 12, 3284 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. R. Sugimoto, S. Takeda, H. B, Ou, and K. Yoshino, Chem. Express 1, 635 (1986).

    CAS  Google Scholar 

  6. C. Zhang, J. Xue, X. Yang, Y. Ke, R. Ou, Y. Wang, S. A. Madbouly, and Q. Wang, Prog. Polym. Sci. 125, 101473 (2022).

  7. J. C. Carranza-Cruz, E. Rivera, G. Santana, S. Martínez-Gallegos, and J. Illescas, MRS Adv. 6, 965 (2021).

    Article  CAS  Google Scholar 

  8. A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, and S. R. Waldvogel, Angew. Chem. Int. Ed. 57, 5594 (2018).

    Article  CAS  Google Scholar 

  9. S. S. Shinde and J. A. Kher, Int. J. Innov. Res. Sci. Eng. Technol. 3, 16570 (2014).

    Article  Google Scholar 

  10. M. Uchiyama, K. Satoh, and M. Kamigaito, Prog. Polym. Sci. 124, 101485 (2022).

  11. H. Shen, H. Qiao, and H. Zhang, Chem. Eng. J. 450, 137905 (2022).

  12. G. John, S. Nagarajan, P. K. Vemula, J. R. Silverman, and C. Pillai, Prog. Polym. Sci. 92, 158 (2019).

    Article  CAS  Google Scholar 

  13. B. Daho, C. Fontanesi, M. Messori, A. Dehbi, and A. Belfedal, Semiconductors 53, 1656 (2019).

    Article  Google Scholar 

  14. W. Yi, W. Feng, M. Cao, and H. Wu, Polym. Adv. Techn. 15, 431 (2004).

    Article  CAS  Google Scholar 

  15. S. V. Dudkin, T. Kawata, S. A. Belova, Y. Okada, and N. Kobayashi, J. Porphyrins and Phthalocyanines 24, 878 (2020).

  16. B. C. Percival, A. Wann, R. Zbasnik, V. Schlegel, M. Edgar, J. Zhang, G. Ampem, P. Wilson, A. Le Gresley, and D. Naughton, Nutrients 12, 753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. K. De, K. Sharma, and C. Sharma, Colloid Polym. Sci. 296, 107 (2018).

    Article  CAS  Google Scholar 

  18. A. A. Lahouel, N. Miloudi, K. Medjahed, A. Berrayah, and N. Sahli, Polym. Sci., Ser. B 64, 715 (2022).

    Article  Google Scholar 

  19. F. Calderón, M. Haddix, R. Conant, K. Magrini-Bair, and E. Paul, Soil Sci. Soc. Amer. J. 77, 1591 (2013).

    Article  Google Scholar 

  20. A. Belmokhtar, N. Sahli, A. Yahiaoui, and M. Belbachir, Express Polym. Lett. 1, 443 (2007).

    Article  Google Scholar 

  21. H. Gherras, A. Hachemaoui, A. Yahiaoui, M. Belbachir, and A. Belfedal, IOP Conf. Ser.: Mater. Sci. Eng. 28, 012016 (2012).

  22. G. Neetika, D. Kumar, and S. Tomar, Int. J. Mater. Chem. 2, 79 (2012).

    Article  Google Scholar 

  23. Y. Wang and M. Rubner, Macromolecules 25, 3284 (1992).

    Article  CAS  Google Scholar 

  24. P. J. Davies, A. R. Horrocks, and A. Alderson, Polym. Degrad. Stab. 88, 114 (2005).

    Article  CAS  Google Scholar 

  25. C.-L. Ho and W.-Y. Wong, Coordination Chem. Rev. 255, 2469 (2011).

    Article  CAS  Google Scholar 

  26. A. Iwan, Renewable Sustainable Energy Rev. 52, 65 (2015).

    Article  CAS  Google Scholar 

  27. A. Escobedo-Morales, I. Ruiz-López, M. de L. Ruiz-Peralta, L. Tepech-Carrillo, M. Sánchez-Cantú, and J. Moreno-Orea, Heliyon 5, e01505 (2019).

  28. P. Jubu, F. Yam, V. Igba, and K. Beh, J. Solid State Chem. 290, 121576 (2020).

  29. N. Colaneri, M. Kobayashi, A. Heeger, and F. Wudl, Synt. Met. 14, 45 (1986).

    Article  CAS  Google Scholar 

  30. J. Roncali, Chem. Rev. 97, 173 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. A. Ajayaghosh, Chem. Soc. Rev. 32, 181 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. A. Siove and D. Adès, Polymer 45, 4045 (2004).

    Article  CAS  Google Scholar 

  33. A. Yasuda and T. Shimidzu, Polym. J. 25, 329 (1993).

    Article  CAS  Google Scholar 

  34. M. Bıyıkoğlu and H. Çiftçi, Polym. Bull. 70, 2843 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas Abderrahmane Lahouel.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anas Abderrahmane Lahouel, Nabahat Sahli A New Approach to the Synthesis of Poly[Pyrrole-co-Vanillin] Semiconductor Polymer Doped with FeCl3. Polym. Sci. Ser. B 65, 505–513 (2023). https://doi.org/10.1134/S156009042370104X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156009042370104X

Navigation