Skip to main content
Log in

Tailoring the Physical Properties by Gamma-Irradiation of Cellulose Nitrate Films: Insights in Different Applications

  • MODIFICATION OF POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Herein, we addressed and monitored the chemical/physical induced changes in the cellulose nitrate (CN) upon γ-rays. The functionality of CN film over γ-irradiation process was explained in the light of the competition between cross-linking and scission processes. XRD, FTIR, UV/VIS and PL were used as techniques for imaging the interaction output between γ-rays and CN films. XRD patterns revealed that CN is semicrystalline in nature and the degree of crystallinity boosted as a function of irradiation dose up to 225 kGy. FTIR showed the general reduction trend in the intensity of different existent function groups with increasing the irradiation doses up to 225 kGy followed by an increase at 300 kGy. The spectroscopic results showed strong absorption in the UV-region and fluorescent only when irradiated by 45 and 125 kGy. The energy gap values calculated at different doses from UV/VIS and PL results are comparable and dose-dependent. Significant modifications in the structural and optical properties of cellulose nitrate films were acquired by gamma irradiation for the possibility to use in more potential technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. J. P. Y. Ho, C. W. Y. Yip, V. S. Y. Koo, D. Nikezic, and K. N. Yu, Radiat. Meas. 35, 571 (2002).

    Article  CAS  Google Scholar 

  2. S. N. Nikolsky, D. V. Zlenko, V. P. Melnikov, and S. V. Stovbun, Carbohydr. Polym. 204, 232 (2018).

    Article  Google Scholar 

  3. S. A. Durrani, Nucl. Tracks Radiat. Meas. 6, 209 (1982).

    Article  CAS  Google Scholar 

  4. V. Kumar, R. G. Sonkawade, S. K. Chakarvarti, P. Kulriya, K. Kant, N. L. Singh, and A. S. Dhaliwa, Vacuum 86, 275 (2011).

    Article  CAS  Google Scholar 

  5. T. Steckenreiter, E. Balanzat, H. Fuess, and C. Trautmann, Nucl. Instrum. Methods Phys. Res., Part B 131, 159 (1997).

    CAS  Google Scholar 

  6. D. Hermsdorf, Radiat. Meas. 46, 396 (2011).

    Article  CAS  Google Scholar 

  7. M. F. Zaki, T. M. Hegazy, and D. H. Taha, Chin. J. Phys. 52, 1364 (2014).

    Google Scholar 

  8. S. I. Kuzina, S. V. Stovbun, A. G. Salina, V. A. Kochukov, N. Ya. Kuznetsova, and A. I. Mikhailov. Eur. Polym. J. 27, 703 (1991).

    Article  CAS  Google Scholar 

  9. S. Mayaki, A. O. Dasilva, and A. Tldjani, Radiat. Meas. 26, 657 (1996).

    Article  CAS  Google Scholar 

  10. J. Charvat and F. Spurns, Nucl. Tracks Radiat. Meas. 14, 44149 (1988).

    Google Scholar 

  11. M. Zamani, E. Savides, and S. Charalambous, Nucl. Tracks 4, 171 (1980).

    Article  CAS  Google Scholar 

  12. J. W. Mitchell and A. Addagad, Radiat. Phys. Chem. 76, 691 (2007).

    Article  CAS  Google Scholar 

  13. H. A. Khan and I. E. Qureshi, Radiat. Meas. 31, 25 (1999).

    Article  CAS  Google Scholar 

  14. S. A. Nouh and T. M. Hegazy, Radiat. Meas. 41, 17 (2006).

    Article  CAS  Google Scholar 

  15. M. F. Zaki, A. M. Ali, and R. M. Amin, J. Adhes. Sci. Technol. 31, 1314 (2017).

    Article  CAS  Google Scholar 

  16. M. F. Zaki, J. King Saud Univ., Sci. 28, 339 (2016).

    Google Scholar 

  17. D. N. S. Hon and H. C. Chan, ACS Symp. Ser. 187, 101 (1982).

    Article  CAS  Google Scholar 

  18. B. G. Ershov, Russ. Chem. Rev. 67, 315 (1998).

    Article  Google Scholar 

  19. The Radiation Chemistry of Polysaccharides, Ed. by S. Al-Assaf, X. Coqueret, K. Z. H. M. Dahlan, M. Sen, and P. Ulanski (Int. Atomic Energy Agency, Vienna, 2016), p. 361.

  20. M. F. Zaki, A. M. Rashad, and Sh. I. Elkalashy, Nucl. Instrum. Methods Phys. Res., Part B 482, 37 (2020).

    CAS  Google Scholar 

  21. M. F. Zaki, R. M. Radwan, and A. M. Rashad, Polym. Bull. 78, 7167 (2021). http://doi.org/10.1007/s00289-020-03474-z

    Article  CAS  Google Scholar 

  22. A. M. Abdul-Kader, M. F. Zaki, R. M. Radwan, and N. Abuhadi, Radiat. Phys. Chem. 151, 12 (2018).

    Article  CAS  Google Scholar 

  23. A. V. Ponomarev and B. G. Ershov, Molecules 19, 16877 (2014).

    Article  Google Scholar 

  24. Z. Zhudi, Y. Wenxue, and C. Xinfang, Radiat. Phys. Chem. 65, 173 (2002).

    Article  Google Scholar 

  25. A. Tayel, M. F. Zaki, A. B. El Basaty, and T. M. Hegazy, J. Nucl. Mater. 442, 184 (2013).

    Article  CAS  Google Scholar 

  26. Z. Lounis-Mokrani, M. Fromm, R. Barillon, A. Chambaudet, and M. Allab, Radiat. Meas. 36, 615 (2003).

    Article  CAS  Google Scholar 

  27. V. Kumar, R. G. Sonkawade, S. K. Chakarvarti, P. Singh, and A. S. Dhaliwal, Radiat. Phys. Chem. 81, 652 (2012).

    Article  CAS  Google Scholar 

  28. K. C. C. Tse, F. M. F. Ng, D. Nikezic, and K. N. Yu, Nucl. Instrum. Methods Phys. Res., Part B 263, 294 (2007).

    CAS  Google Scholar 

  29. J. W. Mitchell and A. Addagad, Radiat. Phys. Chem. 76, 691 (2007).

    Article  CAS  Google Scholar 

  30. B. Pejova, A. Tanusevski, and I. Grozdanov, J. Solid State Chem. 177, 4785 (2004).

    Article  CAS  Google Scholar 

  31. V. I. Kovalenko, R. M. Mukhamadeeva, L. N. Maklakova, and N. G. Gustova, J. Struct. Chem. 34, 59 (1994).

    Article  Google Scholar 

  32. S. K. Shetty and I. G. Shetty, J. Macromol. Sci., Part B: Phys. 59, 235 (2020).

    Article  CAS  Google Scholar 

  33. S. B. Aziz, H. M. Ahmed, A. M. Hussein, A. B. Fathulla, R. M. Wsw, and R. T. Hussein, J. Mater. Sci.: Mater. Electron. 26, 8022 (2015).

    CAS  Google Scholar 

  34. M. F. Zaki, W. A. Ghaly, and H. S. El-Bahkiry, Surf. Coat. Technol. 275, 363 (2015).

    Article  CAS  Google Scholar 

  35. T. S. Soliman and S. A. Vshivkov, J. Non-Cryst. Solids 519, 119452 (2019).

  36. M. A. Fadel, W. Khalil, R. A. ABD-Alla, Nucl. Instrum. Methods Phys. Res., Part A 236, 178 (1985).

    Google Scholar 

  37. T. S. Soliman, S. A. Vshivkov, and S. I. Elkalashy, Polym. Compos. 41, 3340 (2020).

    Article  CAS  Google Scholar 

  38. G. Mohammed, A. M. El Sayed, and W. M. Morsi, J. Phys. Chem. Solids 115, 238 (2018).

    Article  CAS  Google Scholar 

  39. N. G. Imam and A. Hashhash, Nucl. Instr. Meth. Phys. Res., Part A 767, 353 (2014).

    CAS  Google Scholar 

  40. Z. K. Heiba, M. B. Mohamed, and N. G. Imam, J. Alloys Comp. 618, 280 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. F. Zaki or N. G. Imam.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaki, M.F., Elkalashy, S.I. & Imam, N.G. Tailoring the Physical Properties by Gamma-Irradiation of Cellulose Nitrate Films: Insights in Different Applications. Polym. Sci. Ser. B 64, 142–154 (2022). https://doi.org/10.1134/S1560090422020142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090422020142

Navigation