Skip to main content
Log in

Electrophoretic as New Method for Deposition of Polyaniline Derivatives Nanostructure Coatings

  • FUNCTIONAL POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

In this research, at the commencement, polyaniline (PANi), polyorthoanisidine (PoAnis), polyorthotoluidine (PoTol), and polyorthoamino phenol (PoAP) were synthesized through a chemical polymerization process. Subsequently, the nanostructured coatings of these polymers were electrodeposited on a stainless steel 304 substrate through an electrophoresis method in a solution containing emeraldine salt in multiple solvents (as a colloidal suspension) and aluminum nitrate (as a charging agent). The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were employed to assess the structure and determine the synthesized polymer morphology. The SEM images clearly indicated that the particle sizes of all the polymers were less than 100 nm. In electrophoresis approach, voltage, time and the type of solvent are the effective factors and components on the film quality. Henceforward, we commenced studying how these factors can affect the coating of nanostructured polyaniline and its derivatives. The optimum voltage, process time, and solvent amount required for the formation of each nanostructured polymeric coating were obtained as 25 V, 12 min, and ethanol for PANi, 5 V and 8–10 min for PoAP, 30 V and 25 min for PoTol, 37 V and 20 min for PoAnis, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 2.
Scheme 3.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. X.-Z. Gao, H.-J. Liu, F. Cheng, and Y. Chen, Chem. Eng. J. 283, 682 (2016).

    Article  CAS  Google Scholar 

  2. N. Ezzatti, E. Asadi, M. Abdouss, and M. H. Ezzati, “Polyaniline Nano-/Micromaterials-Based Blends and Composites,” in Polyaniline Blends, Composites, and Nanocomposites, Ed. by P. M. Visakh, C. D. Pina, and E. Falletta (Elsevier, Amsterdam, 2018), Chap. 4, pp. 95–115.

    Google Scholar 

  3. A. V. Okotrub, I. P. Asanov, P. S. Galkin, L. G. Bulusheva, G. N. Chekhova, A. G. Kurenya, and Yu. V. Shubin, Polym. Sci., Ser. B 52, 101 (2010).

    Article  Google Scholar 

  4. F. A. Rafiqi and K. Majid, Polym. Sci., Ser. B 58, 371 (2016).

    Article  CAS  Google Scholar 

  5. K.-U. Lee, J. Y. Byun, H.-J. Shin, and S. H. Kim, J. Alloys Compd. 779, 74 (2019).

    Article  CAS  Google Scholar 

  6. Z. Li, X. Zhou, J. Shi, X. Zou, X. Huang, and H. E. Tahir, Food Chem. 276, 291 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. R. Prakash and K. S. V. Santhanam, J. Solid State Electrochem. 2, 123 (1998).

    Article  CAS  Google Scholar 

  8. C. Zhao, Y. Jin, X. Du, and W. Du, J. Power Sources 399, 337 (2018).

    Article  CAS  Google Scholar 

  9. A. de Leon and R. C. Advincula, “Conducting Polymers with Superhydrophobic Effects as Anticorrosion Coating,” in Intelligent Coatings for Corrosion Control (Butterworth-Heinemann, Boston, 2015), Chap. 11, pp. 409–430.

    Google Scholar 

  10. A. Kalendová, I. Sapurina, J. Stejskal, and D. Veselý, Corros. Sci. 50, 3549 (2008).

    Article  CAS  Google Scholar 

  11. L. Yue, Y. Xie, Y. Zheng, W. He, S. Guo, Y. Sun, T. Zhang, and S. Liu, Compos. Sci. Technol. 145, 122 (2017).

    Article  CAS  Google Scholar 

  12. W. F. Alves, E. C. Venancio, F. L. Leite, D. H. F. Kanda, L. F. Malmonge, J. A. Malmonge, and L. H. C. Mattoso, Thermochim. Acta 502, 43 (2010).

    Article  CAS  Google Scholar 

  13. H. Valentová and J. Stejskal, Synth. Met. 160, 832 (2010).

    Article  CAS  Google Scholar 

  14. S. P. Surwade, S. R. Agnihotra, V. Dua, H. S. Kolla, X. Zhang, and S. K. Manohar, Synth. Met. 159, 2153 (2009).

    Article  CAS  Google Scholar 

  15. J. J. Hwang, C. Soto, D. Lafaurie, M. Stephen, and D. M. Sarno, J. Colloid Interface Sci. 513, 331 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. E. P. Koval’chuk, N. V. Stratan, O. V. Reshetnyak, J. Błażejowski, and M. S. Whittingham, Solid State Ionics 141–142, 217 (2001).

    Article  Google Scholar 

  17. A. Verma and U. Riaz, J. Drug Delivery Sci. Technol. 48, 49 (2018).

    Article  CAS  Google Scholar 

  18. S. Menon, S. Jesny, and K. Girish Kumar, Talanta 179, 668 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. J. Pishahang, H. B. Amiri, and H. Heli, Sens. Actuators, B 256, 878 (2018).

    Article  CAS  Google Scholar 

  20. H. Huang and Z. J. Guo, Polym. Sci., Ser. B 53, 31 (2011).

    Article  CAS  Google Scholar 

  21. Y. M. Lee, J. H. Kim, J. S. Kang, and S. Y. Ha, Macromolecules 33, 7431 (2000).

    Article  CAS  Google Scholar 

  22. A. R. Hopkins, P. G. Rasmussen, R. A. Basheer, B. K. Annis, G. D. Wignall, and W. A. Hamilton, Synth. Met. 97, 47 (1998).

    Article  CAS  Google Scholar 

  23. J. Kim, S. Kwon, and D. Ihm, Curr. Appl. Phys. 7, 205 (2007).

    Article  Google Scholar 

  24. V. V. Khutoryanskiy, R. Y. Smyslov, and A. V. Yakimansky, Polym. Sci., Ser. A 60, 553 (2018).

    Article  CAS  Google Scholar 

  25. K. Zhou, C. Liu, and R. Gao, Composites, Part A 112, 432 (2018).

    Article  CAS  Google Scholar 

  26. H. Wang, R. Guo, Y. Shen, Y. Shao, G. Fei, and K. Zhu, Prog. Org. Coat. 126, 187 (2019).

    Article  CAS  Google Scholar 

  27. P. Varakirkkulchai, S. Kongparakul, and P. Prasassarakich, Prog. Org. Coat. 85, 84 (2015).

    Article  CAS  Google Scholar 

  28. A. T. Ozyilmaz, A. Akdag, I. H. Karahan, and G. Ozyilmaz, Prog. Org. Coat. 77, 872 (2014).

    Article  CAS  Google Scholar 

  29. A. Sayah, F. Habelhames, A. Bahloul, B. Nessark, Y. Bonnassieux, D. Tendelier, and M. El Jouad, J. Electroanal. Chem. 818, 26 (2018).

    Article  CAS  Google Scholar 

  30. S. Ameen, M. Shaheer Akhtar, S. G. Ansari, O.-B. Yang, and H. S. Shin, Superlattices Microstruct. 46, 872 (2009).

    Article  CAS  Google Scholar 

  31. C. Dhand, G. Sumana, M. Datta, and B. D. Malhotra, Thin Solid Films 519, 1145 (2010).

    Article  CAS  Google Scholar 

  32. L. Shao, X. Wang, B.Yang, Q.Wang, Q.Tian, Z. Ji, and J. Zhang, Electrochim. Acta 255, 286 (2017).

    Article  CAS  Google Scholar 

  33. M. Y. Kvasnikov, O. A. Romanova, K. N. Smirnov, I. F. Utkina, M. R. Kiselev, Yu. M. Korolev, I. A. Krylova, E. M. Antipov, and A. A. Silaeva, Polym. Sci., Ser. A 57, 473 (2015).

    Article  CAS  Google Scholar 

  34. P. Amrollahi, J. S. Krasinski, R. Vaidyanathan, L. Tayebi, and D. Vashaee, “Electrophoretic Deposition (EPD): Fundamentals and Applications from Nano- to Micro-Scale Structures,” in Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties and Characterization Techniques, Ed. M. Aliofkhazraei and A. S. H. Makhlouf, (Springer Int. Publ., Cham, 2016), p. 1–27.

    Google Scholar 

  35. T. Yoshioka, A. Chávez-Valdez, J. A. Roether, D. W. Schubert, and A. R. Boccaccini, J. Colloid Interface Sci. 392, 167 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. L. Besra and M. Liu, Prog. Mater. Sci. 52, 1 (2007).

    Article  CAS  Google Scholar 

  37. S. Cabanas-Polo and A. R. Boccaccini, J. Eur. Ceram. Soc. 36, 265 (2016).

    Article  CAS  Google Scholar 

  38. Y. Fukada, N. Nagarajan, W. Mekky, Y. Bao, H.‑S. Kim, and P. S. Nicholson, J. Mater. Sci. 39, 787 (2004).

    Article  CAS  Google Scholar 

  39. M. Farrokhi-Rad, Ceram. Int. 44, 15346 (2018).

    Article  CAS  Google Scholar 

  40. M. Farrokhi-Rad, Ceram. Int. 42 (2, Part B), 3361 (2016).

    Article  CAS  Google Scholar 

  41. P. A. Trzaskowska, A. Poniatowska, M. Trzaskowski, J. Latocha, P. Ozga, R. Major, and T. Ciach, Mater. Sci. Eng., C 93, 134 (2018).

    Article  CAS  Google Scholar 

  42. O. Smithies, “How It All Began: A Personal History of Gel Electrophoresis,” in Electrophoretic Separation of Proteins: Methods and Protocols, Ed. by B. T. Kurien and R. H. Scofield (Springer, New York, 2019), p. 1–21.

    Google Scholar 

  43. Y. Wang, X. Pang, and I. Zhitomirsky, Colloids Surf., B 87, 505 (2011).

    Article  CAS  Google Scholar 

  44. G. Li, C. Martinez, and S. Semancik, J. Am. Chem. Soc. 127, 4903 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. G. Li and S. Semancik, MRS Online Proc. Lbr. 876, R6.9 (2005).

  46. A. V. Lezov, G. E. Polushina, A. A. Lezov, O. A. Pyshkina, A. N. Korovin, and V. G. Sergeev, Polym. Sci., Ser. A 52, 679 (2010).

    Article  Google Scholar 

  47. B. Massoumi and R. J. Mohammadi, Polym. Sci., Ser. B 55, 593 (2013).

    Article  CAS  Google Scholar 

  48. B. Massoumi, F. G. Peivasti, M. Saraei, and A. A. Entezami, Polym. Sci., Ser. B 53, 586 (2011).

    Article  CAS  Google Scholar 

  49. T. Teklu, L. M. Wangatia, and E. Alemayehu, Polym. Sci., Ser. B 59, 624 (2017).

    Article  CAS  Google Scholar 

  50. S. Shayegh, H. A. Bioki, M. B. Zarandi, N. K. Samani, and A. Rahnamanic, Polym. Sci., Ser. B 59, 616 (2017).

    Article  CAS  Google Scholar 

  51. B. N. Patra, M. Patra, D. Majhi, and N. K. Mohanty, Polym. Sci., Ser. B 57, 349 (2015).

    Article  CAS  Google Scholar 

  52. P. J. Saikia, P. C. Sarmah, and A. J. Rahman, Polym. Sci., Ser. A 55, 48 (2013).

    Article  CAS  Google Scholar 

  53. Y. Xia, D. Zhu, S. Si, D. Li, and S. Wu, J. Power Sources 283, 125 (2015).

    Article  CAS  Google Scholar 

  54. M. Farrokhi-Rad, A. Fateh, and T. Shahrabi, Surf. Interfaces 12, 145 (2018).

    Article  CAS  Google Scholar 

  55. M. Farrokhi-Rad, T. Shahrabi, and F. Shahriari, J. Eur. Ceram. Soc. 34, 4411 (2014).

    Article  CAS  Google Scholar 

Download references

Funding

The authors hereby would like to express their sincere thanks to Payame Noor University of Tehran for supporting them during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kazemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, H., Adelkhani, H., Didehban, K. et al. Electrophoretic as New Method for Deposition of Polyaniline Derivatives Nanostructure Coatings. Polym. Sci. Ser. B 61, 835–845 (2019). https://doi.org/10.1134/S1560090419060058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090419060058

Navigation