Skip to main content
Log in

Hydrogenated Natural Rubber as an Alternative Replacement to Ethylene-Propylene-Diene-Monomer (EPDM) Rubber in Terms of Thermal-Oxidative Degradation Properties

  • MODIFICATION OF POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Hydrogenated natural rubber was prepared by the non-catalytic hydrogenation of natural rubber latex (NRL) with diimide generated from oxidation of hydrazine by hydrogen peroxide. The hydrogenated natural rubber (HNR) was characterized by Raman and FTIR spectroscopy. Raman and FTIR spectra showed that the chemical structure of hydrogenated natural rubber tends to be similar to ethylene-propylene-diene-monomer rubber. The thermogravimetric analysis revealed that the thermal-oxidative decomposition resistance of 65% HNR was close to those of EPDM and the thermal-oxidative decomposition behavior of 65% HNR was similar to EPDM. It is interesting that HNR can be a potential alternative to EPDM in terms of thermal-oxidative degradation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. N. K. Singha, S. Bhattacharjee, and S. Sivaram, Rubber Chem. Technol. 70, 309 (1997).

    Article  CAS  Google Scholar 

  2. N. Hinchiranan, K. Charmondusit, P. Prasassarakich, and G. L. Rempel, J. Appl. Polym. Sci. 100, 4219 (2006).

    Article  CAS  Google Scholar 

  3. N. Hinchiranan, P. Prasassarakich, and G. L. Rempel, J. Appl. Polym. Sci. 100, 4499 (2006).

    Article  CAS  Google Scholar 

  4. N. Hinchiranan, W. Lertweerasirikun, W. Poonsawad, G. L. Rempel, and P. Prasassarakich, J. Appl. Polym. Sci. 113, 1566 (2009).

    Article  CAS  Google Scholar 

  5. A. Mahittikul, P. Prasassarakich, and G. L. Rempel, J. Appl. Polym. Sci. 100, 640 (2006).

    Article  CAS  Google Scholar 

  6. N. S. Can, N. Subramaniam, and R. Yahya, J. Appl. Polym. Sci. 59, 63 (1996).

    Article  Google Scholar 

  7. X. Lin, PhD Thesis (Waterloo University, Waterloo, 2005).

  8. M. De Sarkar, P. P. De, and A. K. Bhowmick, Polymer 41, 907 (2000).

    Article  CAS  Google Scholar 

  9. W. Arayapranee and G. L. Rempel, J. Appl. Polym. Sci. 114, 4066 (2009).

    Article  CAS  Google Scholar 

  10. K. Simma, G. L. Rempel, and P. Prasassarakich, Polym. Degrad. Stab. 94, 1914 (2009).

    Article  CAS  Google Scholar 

  11. H. Q. Xie, X. D. Li, and J. S. Guo, J. Appl. Polym. Sci. 90, 1026 (2003).

    Article  CAS  Google Scholar 

  12. H. Bockhorn, A. Hornung, U. Hornung, and D. Schawaller, J. Anal. Appl. Pyrolysis. 48, 93 (1999).

    Article  CAS  Google Scholar 

  13. J. A. Blach, G. S. Watson, W. K. Busfield, and S. Myhra, Polym. Int. 51, 12 (2001).

    Article  Google Scholar 

  14. R. Gensler, C. J. G. Plummer, H. H. Kausch, E. Kra-mer, J. R. Pauquet, and H. Zweifel, Polym. Degrad. Stab. 67, 195 (2000).

    Article  CAS  Google Scholar 

  15. B. Singh and N. Sharma, Polym. Degrad. Stab. 93, 561 (2008).

    Article  CAS  Google Scholar 

  16. W. Wang and B. Qu, Polym. Degrad. Stab. 81, 531 (2003).

    Article  CAS  Google Scholar 

  17. G. Sott, Mechanisms of Polymer Degradation and Stabilization (Elsevier, England, 1927).

    Google Scholar 

  18. T. Kelen, Polymer Degradation (Van Nostrant Reinhold Company, New York, USA, 1983).

    Google Scholar 

  19. A. Mahittikul, P. Prasassarakich, and G. L. Rempel, J. Appl. Polym. Sci. 103, 2885 (2007).

    Article  CAS  Google Scholar 

  20. J. Samran, P. Phinyocheep, P. Daniel, and S. Kittipoom, J. Appl. Polym. Sci. 95, 16 (2004).

    Article  Google Scholar 

  21. A. Mahittikul, P. Prasassarakich, and G. L. Rempel, J. Appl. Polym. Sci. 105, 1188 (2007).

    Article  CAS  Google Scholar 

  22. J. Samran, P. Phinyocheep, P. Daniel, D. Derouet, and J. Y. Buzare’, J. Raman Spectrosc. 35, 1073 (2004).

    Article  CAS  Google Scholar 

  23. M. J. Starink, Thermochim. Acta 288, 97 (1996).

    Article  CAS  Google Scholar 

  24. K. Slopiecka, P. Bartocci, and F. Fantozzi, Appl. Energy 97, 491 (2012).

    Article  CAS  Google Scholar 

  25. M. J. Starink, Thermochim. Acta. 404, 163 (2003).

    Article  CAS  Google Scholar 

  26. Y. Tonbul and A. Saydut, Oil Shale 24, 547 (2007).

    CAS  Google Scholar 

  27. A. Aboulkas and K. El Harfi, Oil Shale 25, 426 (2008).

    Article  CAS  Google Scholar 

  28. I. Mohoriè, M. Krajnc, and U. Šebenik, Chem. Biochem. Eng. Q. 23, 493 (2009).

    Google Scholar 

  29. T. Hatakeyama and F. X. Quinn, Thermal Analysis Fundamentals and Applications to Polymer Science (Wiley, England, 1999).

    Google Scholar 

  30. Y. Cai, S. D. Li, C. P. Li, P. W. Li, C. Wang, M. Z. Lv, and K. Xu, J. Appl. Polym. Sci. 106, 743 (2007).

    Article  CAS  Google Scholar 

  31. S. D. Li, H. P. Yu, Z. Peng, C. S. Zhu, and P. S. Li, J. Appl. Polym. Sci. 75, 1339 (2000).

    Article  CAS  Google Scholar 

  32. Z. Peng, S. D. Li, M. F. Huang, K. Xu, C. Wang, P. W. Li, and X. G. Chen, J. Appl. Polym. Sci. 85, 2952 (2002).

    Article  CAS  Google Scholar 

  33. R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometer Identification of Organic Compounds (Wiley, New York, 1991).

    Google Scholar 

  34. B. D. Mistry, A Handbook of Spectroscopic Data Chemistry. UV, IR, PMR, 13 CNMR and Mass Spectroscopy (Oxford Book Company, India, 2009).

    Google Scholar 

  35. P. J. Hendra and K. D. O. Jackson, Spectrochim. Acta 50, 1987 (1994).

    Article  Google Scholar 

  36. A. M. Healey, P. J. Hendra, and Y. D. West, J. Polym. 30, 4009 (1996).

    Article  Google Scholar 

  37. K. D. O. Jackson, M. J. R. Loadman, C. H. Jones, and G. Ellis, Spectrochim. Acta 64, 217 (1990).

    Article  Google Scholar 

  38. S. J. Bunce, H. G. M. Edwards, A. F. Johnson, I. R. Lewis, and P. H. Turner, Spectrochim. Acta 49, 775 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korn Taksapattanakul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korn Taksapattanakul, Tulyapitak, T., Phinyocheep, P. et al. Hydrogenated Natural Rubber as an Alternative Replacement to Ethylene-Propylene-Diene-Monomer (EPDM) Rubber in Terms of Thermal-Oxidative Degradation Properties. Polym. Sci. Ser. B 61, 567–573 (2019). https://doi.org/10.1134/S1560090419050178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090419050178

Navigation