Skip to main content
Log in

Composites Based on Starch and Polylactide

  • POLYMER BLENDS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The blends of polylactide with starch at different component ratio are obtained under shear deformation in a Brabender mixer. The thermal behavior of polylactide composites with starch is studied by DSC, and their crystallinity is determined using X-ray diffraction; according to GPC data, the biodegradation of these composites upon exposure in the soil is quantified. An analysis of the experimental results shows that polylactide is almost incompatible with starch. A decrease in the melting point of polylactide in the composites with an increase in the starch content indicates the formation of more defective small crystals due to the difficulty of the crystallization process. On the basis of the data of X-ray structural analysis, it is shown that the total degree of crystallinity of the composites increases after exposure in the soil. This is associated with the washing out of the amorphous polylactide region under the action of water and microorganisms in the soil. Using GPC, it is shown for the first time that the biodegradation of polylactide when exposed in the soil proceeds according to the depolymerization mechanism; in the composites, this process occurs more intensely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. S. K. Lin, L. A. Platzgraff, L. Herrero-Davila, E. B. Mubofu, S. Abderrahim, J. H. Clark, A. A. Koutinas, N. Kopsahelis, K. Stamatelatou, F. Dickson, S. Thankappan, Z. Mohamed, R. Blocklesby, and R. Luque, Energy Environ. Sci. 6, 426 (2013).

    Article  CAS  Google Scholar 

  2. S. Z. Rogovina, Polym. Sci., Ser. C 58, 62 (2016).

    Article  CAS  Google Scholar 

  3. R. Nanda, A. Sasmal, and P. L. Nayak, Carbohydr. Polym. 83, 988 (2011).

    Article  CAS  Google Scholar 

  4. J. Bonilla, E. Fortunati, M. Vargas, A. Chiralt, and J. M. Kenny, J. Food Eng. 119, 236 (2013).

    Article  CAS  Google Scholar 

  5. S. Z. Rogovina, K. V. Aleksanyan, A. Ya. Gorenberg, Yu. I. Deryabina, E. P. Isakova, E. V. Prut, and A. A. Berlin, Russ. J. Bioorg. Chem. 42, 685 (2016).

    Article  CAS  Google Scholar 

  6. S. Z. Rogovina, K. V. Aleksanyan, A. V. Grachev, A. A. Berlin, and E. V. Prut, Mendeleev Commun. 25, 361 (2015).

    Article  CAS  Google Scholar 

  7. A. P. Mathew, K. Oksman, and M. Sain, J. Appl. Polym. Sci. 101, 300 (2006).

    Article  CAS  Google Scholar 

  8. L. Yu, S. Petinakis, K. Dean, A. Bilyk, D. Wu, Macromol. Symp. 249–250, 535.

  9. S. Z. Rogovina, K. V. Aleksanyan, A. A. Kosarev, N. E. Ivanushkina, E. V. Prut, and A. A. Berlin, Polym. Sci., Ser. B 58, 38 (2016).

    Article  CAS  Google Scholar 

  10. Y. Yu, Y. Cheng, J. Ren, E. Cao, X. Fu, and W. Guo, J. Appl. Polym. Sci. 132, (2015). https://doi.org/10.1002/app.41808

  11. M. Kozlowski, R. Masirek, E. Piorkowska, and M. Gazicki-Lipman, J. Appl. Polym. Sci. 105, 269 (2007).

    Article  CAS  Google Scholar 

  12. C.-H. Kim, D.-W. Kim, and K. Y. Cho, Polym. Bull. 63, 91 (2009).

    Article  CAS  Google Scholar 

  13. T. Ishihara, M. Takahashi, M. Higaki, Y. Mizushima, and T. Mizushima, Int. J. Pharm. 385, 170 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. S. Z. Rogovina, K. V. Aleksanyan, A. A. Loginova, N. E. Ivanushkina, L. V. Vladimirov, E. V. Prut, and A. A. Berlin, Starch/Stärke 70, (2018). https://doi.org/10.1002/star.201700268

  15. E. Capała, A. Kowalczyk, M. Chyc, P. Tyński, W. Sadurski, and D. Latowski, New Biotechnol. 33, 153 (2016).

    Article  Google Scholar 

  16. R. L. Shogren, G. Selling, and J. L. Willett, J. Polym. Environ. 19, 329 (2011).

    Article  CAS  Google Scholar 

  17. S. Zhang, X. Feng, S. Zhu, Q. Huan, K. Han, Y. Ma, and M. Yu, Mater. Lett. 98, 238 (2013).

    Article  CAS  Google Scholar 

  18. K. Labus, A. Trusek-Holownia, D. Semba, J. Ostrowska, P. Tynski, and J. Bogusz, Pol. J. Chem. Technol. 20, 75 (2018).

    Article  CAS  Google Scholar 

  19. J. M. Schultz, Polymer Crystallization (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Rogovina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogovina, S.Z., Prut, E.V., Aleksanyan, K.V. et al. Composites Based on Starch and Polylactide. Polym. Sci. Ser. B 61, 334–340 (2019). https://doi.org/10.1134/S1560090419030114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090419030114

Navigation