Skip to main content
Log in

Comparative Reactivity of Cyclocarbonate Groups of Oligomeric Triglycerides Based on Soybean Oil and Model Compounds in the Reactions of Nonisocyanate Urethane Formation

  • Synthesis
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

A comparative study of kinetic patterns has been carried out for the reaction of cyclocarbonate groups of oligomers and model compounds with n-butylamine in dimethylsulfoxide. The objects of study were ethylene carbonate, monofunctional 4-(2-ethylhexyloxymethyl) cyclocarbonate, trifunctional tricyclocarbonate of polyoxypropylene triol, and an oligomer based on soybean oil triglycerides with an average functionality of ~4.5. The most active compound is ethylene carbonate, whereas cyclocarbonate groups of the oligomer based on soybean oil triglycerides exhibit the lowest reactivity. All the reactions studied proceed via two parallel reaction pathways involving one and two amine molecules, respectively, and the second pathway contributes more to the observed rate of urethane formation. The dependence of the activation energy of aminolysis on the inductive effect of substituents in the model 4,5-substituted 1,3-dioxolane-2-ones has been established by DFT quantum chemical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Cornille, R. Auvergne, O. Figovsky, B. Boutevin, and S. Caillol, Eur. Polym. J. 87, 535 (2017).

    Article  CAS  Google Scholar 

  2. G. Rokicki, P. G. Parzuchowski, and M. Mazurek, Polym. Adv. Technol. 26, 707 (2015).

    Article  CAS  Google Scholar 

  3. L. Maisonneuve, O. Lamarzelle, E. Rix, E. Grau, and H. Cramail, Chem. Rev. 115, 12407 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. H. Blattmann, M. Fleischer, M. Bahr, and R. Mulhaupt, Macromol. Rapid Commun. 35, 1238 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. O. Figovsky, L. Shapovalov, A. Leykin, R. Birukova, and R. Potashnikova, PU Mag. Int. 10, 1 (2013).

    Google Scholar 

  6. B. Nohra, L. Candy, J.-F. Blanco, C. Guerin, Y. Raoul, and Z. Moolaungui, Macromolecules 46, 3771 (2013).

    Article  CAS  Google Scholar 

  7. O. Figovsky, L. Shapovalov, A. Leykin, O. Birukova, and R. Potashnikova, Int. Lett. Chem., Phys. Astronomy 3, 52 (2013).

    Article  Google Scholar 

  8. J. Guan, Y. Song, Y. Lin, X. Yin, M. Zuo, Y. Zhao, X. Tao, and Q. Zheng, Ind. Eng. Chem. Res. 50, 6517 (2011).

    Article  CAS  Google Scholar 

  9. R. P. Tiger, Polym. Sci., Ser. B 46 (5–6), 142 (2004).

    Google Scholar 

  10. R. M. Garipov, V. A. Sysoev, V. V. Mikheev, A. I. Zagidullin, R. Ya. Deberdeev, V. I. Irzhak, and A. A. Berlin, Dokl. Phys. Chem. 393, 289 (2003).

    Article  CAS  Google Scholar 

  11. R. H. Lambert and T. J. Henderson, Polymer 54, 5568 (2013).

    Article  CAS  Google Scholar 

  12. M. V. Zabalov, R. P. Tiger, and A. A. Berlin, Dokl. Chem. 441 (2011).

    Google Scholar 

  13. M. V. Zabalov, R. P. Tiger, and A. A. Berlin, Russ. Chem. Bull. 61, 518 (2012).

    Article  CAS  Google Scholar 

  14. M. A. Levina, V. G. Krasheninnikov, M. V. Zabalov, and R. P. Tiger, Polym. Sci., Ser. B 56 (2), 139 (2014).

    Article  CAS  Google Scholar 

  15. M. A. Levina, M. V. Zabalov, V. G. Krasheninnikov, and R. P. Tiger, Polym. Sci., Ser. B 59 (5), 497 (2017).

    Article  CAS  Google Scholar 

  16. M. V. Zabalov and R. P. Tiger, Theor. Chem. Acc. 136, article 95 (2017).

    Google Scholar 

  17. M. A. Levina, D. G. Miloslavskii, M. L. Pridatchenko, A. V. Gorshkov, V. T. Shashkova, E. M. Gotlib, and R. P. Tiger, Polym. Sci., Ser. B 57 (6), 584 (2015).

    Article  CAS  Google Scholar 

  18. J. P. Perdew, K. Burke, and M. Ernzerhoff, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. M. Ernzerhoff and G. E. Scuseria, J. Chem. Phys. 110, 5029 (1999).

    Article  Google Scholar 

  20. D. N. Laikov, Chem. Phys. Lett. 281, 151 (1997).

    Article  CAS  Google Scholar 

  21. D. N. Laykov and Yu. A. Ustynuk, Russ. Chem. Bull. 54, 820 (2005).

    Article  CAS  Google Scholar 

  22. H. Tomita, F. Sanda, and T. Endo, J. Polym. Sci., Part A: Polym. Chem. 39, 3678 (2001).

    Article  CAS  Google Scholar 

  23. O. Lamarzelle, P.-L. Durand, A.-L. Wirotius, G. Chollet, E. Graua, and H. Cramail, Polym. Chem. 7, 1439 (2016).

    Article  CAS  Google Scholar 

  24. A. Cornille, M. Blain, R. Auvergne, B. Andrioletti, B. Boutevin, and S. Caillol, Polym. Chem. 8, 592 (2017).

    Article  CAS  Google Scholar 

  25. M. V. Zabalov and R. P. Tiger, Russ. Chem. Bull. 65, 631 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Levina.

Additional information

Original Russian Text © M.A. Levina, M.V. Zabalov, V.G. Krasheninnikov, R.P. Tiger, 2018, published in Vysokomolekulyarnye Soedineniya, Seriya B, 2018, Vol. 60, No. 5, pp. 372–379.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levina, M.A., Zabalov, M.V., Krasheninnikov, V.G. et al. Comparative Reactivity of Cyclocarbonate Groups of Oligomeric Triglycerides Based on Soybean Oil and Model Compounds in the Reactions of Nonisocyanate Urethane Formation. Polym. Sci. Ser. B 60, 563–570 (2018). https://doi.org/10.1134/S1560090418050081

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090418050081

Navigation