Skip to main content
Log in

Green chemistry of polyurethanes: The catalytic n-butylaminolysis of ethylene carbonate as a model chain-growth reaction in the formation of nonisocyanate polyurethanes

  • Catalysis
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The kinetic regularities and the mechanism of the catalytic action of 1,5,7-triazabicyclo[4.4.0]dec-5-ene, which is the most active of the known catalysts for the formation of hydroxyurethanes from cyclocarbonates and amines, were studied using the example of the n-butylaminolysis of ethylene carbonate. In contrast with the noncatalytic reaction, which proceeds via two parallel pathways that involve one and two molecules of amine, the catalytic reaction follows a single pathway: the second molecule of amine is replaced by a molecule of the catalyst that accelerates the process in accordance with the mechanism of bifunctional catalysis. Different reaction pathways were studied by quantum chemical calculations based on the density functional method. It was shown that the high activity of 1,5,7-triazabicyclo[4.4.0]dec-5-ene results from the formation of a planar cation-like form of the catalyst. Moreover, the low-energy transition between the cation and the initial 1,5,7-triazabicyclo[4.4.0]dec-5-ene enables the catalyst to simultaneously be a good donor and acceptor of protons. This study presents a new way for finding among bifunctional organic compounds the catalysts that are even more active in the reaction of cyclocarbonates with amines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Maisonneuve, O. Lamarzelle, E. Rix, E. Grau, and H. Cramail, Chem. Rev. 115, 12407 (2015).

    Article  CAS  Google Scholar 

  2. H. Blattmann, B. M. Fleischer, and R. Mulhaupt, Macromol. Rapid Commun. 35, 1238 (2014).

    Article  CAS  Google Scholar 

  3. B. Nohra, L. Candy, J.-F. Blanco, C. Guerin, Y. Raoul, and Z. Moolaungui, Macromolecules 46, 3771 (2013).

    Article  CAS  Google Scholar 

  4. O. Figovsky, L. Shapovalov, A. Leykin, O. Birukova, and R. Potashnikova, PU Mag. 10, 1 (2013).

    Google Scholar 

  5. O. Figovsky, L. Shapovalov, A. Leykin, O. Birukova, and R. Potashnikova, Int. Lett. Chem., Phys. Astron. 3, 52 (2013).

    Article  Google Scholar 

  6. J. Guan, Y. Song, Y. Lin, X. Yin, M. Zuo, Y. Zhao, X. Tao, and Q. Zheng, Ind. Eng. Chem. Res. 50, 6517 (2011).

    Article  CAS  Google Scholar 

  7. O. L. Figovsky and L. D. Shapovalov, Macromol. Symp. 187, 325 (2002).

    Article  CAS  Google Scholar 

  8. H. Tomita, F. Sanda, and T. Endo, J. Polym. Sci., Polym. Phys. Ed. 39, 851 (2001).

    CAS  Google Scholar 

  9. R. M. Garipov, V. A. Sysoev, V. V. Mikheev, A. I. Zagidullin, R. Ya. Deberdeev, V. I. Irzhak, and A. A. Berlin, Dokl. Phys. Chem. 393, 289 (2003).

    Article  CAS  Google Scholar 

  10. M. V. Zabalov, R. P. Tiger, and A. A. Berlin, Dokl. Chem. 441 (2011).

    Google Scholar 

  11. M. V. Zabalov, R. P. Tiger, and A. A. Berlin, Russ. Chem. Bull., Int. Ed. 61, 518 (2012).

    Article  CAS  Google Scholar 

  12. M. A. Levina, V. G. Krasheninnikov, M. V. Zabalov, and R. P. Tiger, Polym. Sci., Ser. B 56 (2), 139 (2014).

    Article  CAS  Google Scholar 

  13. M. V. Zabalov, M. A. Levina, V. G. Krasheninnikov, and R. P. Tiger, Russ. Chem. Bull., Int. Ed. 63, 1740 (2014).

    Article  CAS  Google Scholar 

  14. J. H. Saunders and K. C. Frisch, Polyurethanes. Chemisrty and Technology (Intersci. Publ., New York; London, 1962).

    Google Scholar 

  15. R. H. Lambeth and T. J. Henderson, Polymer 54, 5568 (2013).

    Article  CAS  Google Scholar 

  16. M. Blain, L. Jean-Gerard, R. Auvergne, D. Benazet, S. Caillol, and B. Andrioletti, Green Chem. 16, 4286 (2014).

    Article  CAS  Google Scholar 

  17. R. H. Lambeth, S. N. Mathew, M. H. Baranoski, K. J. Hausman, B. Tran, and J. M. Oyler, J. Appl. Polym. Sci. 133 (44941) (2017).

    Article  Google Scholar 

  18. C. Thomas and B. Bibal, Green Chem. 16, 1687 (2014).

    Article  CAS  Google Scholar 

  19. T. Okino, Y. Hoashi, and Y. Takemoto, J. Am. Chem. Soc. 125, 12672 (2003).

    Article  CAS  Google Scholar 

  20. J. P. Perdew, K. Burke, and M. Ernzerhoff, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  21. M. Ernzerhoff and G. E. Scuseria, J. Chem. Phys. 110, 5029 (1999).

    Article  Google Scholar 

  22. D. N. Laikov, Chem. Phys. Lett. 281, 151 (1997).

    Article  CAS  Google Scholar 

  23. D. N. Laikov and Yu. A. Ustiniuk, Russ. Chem. Bull., Int. Ed. 54, 820 (2005).

    Article  CAS  Google Scholar 

  24. A. Chuma, H. W. Horn, W. C. Swope, R. C. Pratt, L. Zhang, B. G. G. Lohmeijer, C. G. Wade, R. M. Waymouth, J. L. Hedrick, and J. E. Rice, J. Am. Chem. Soc. 130, 6749 (2008).

    Article  CAS  Google Scholar 

  25. L. Simo’n and J. M. Goodman, J. Org. Chem. 72, 9656 (2007).

    Article  Google Scholar 

  26. M. V. Zabalov and R. P. Tiger, Theor. Chem. Acc. 136, Article 95 (2017).

    Google Scholar 

  27. R. C. Pratt, B. G. G. Lohmeijer, D. A. Long, R. M. Waymouth, and J. L. Hedrick, J. Am. Chem. Soc. 128, 4556 (2006).

    Article  CAS  Google Scholar 

  28. C. Sabot, K. A. Kumar, S. Meunier, and C. A. Mioskowski, Tetrahedron Lett. 48, 3863 (2007).

    Article  CAS  Google Scholar 

  29. M. K. Kiesewetter, M. D. Scholten, N. Kirn, R. L. Weber, J. L. Hedrick, and R. M. Waymouth, J. Org. Chem. 74, 9490 (2009).

    Article  CAS  Google Scholar 

  30. A. P. Dove, ACS Macro Lett. 1, 1409 (2012).

    Article  CAS  Google Scholar 

  31. A. Nachtergael, O. Coulembier, P. Dubois, M. Helvenstein, P. Duez, B. Blankert, and L. Mespouille, Biomacromolecules 16, 507 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Levina.

Additional information

Original Russian Text © M.A. Levina, M.V. Zabalov, V.G. Krasheninnikov, R.P. Tiger, 2017, published in Vysokomolekulyarnye Soedineniya, Seriya B, 2017, Vol. 59, No. 5, pp. 317–325.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levina, M.A., Zabalov, M.V., Krasheninnikov, V.G. et al. Green chemistry of polyurethanes: The catalytic n-butylaminolysis of ethylene carbonate as a model chain-growth reaction in the formation of nonisocyanate polyurethanes. Polym. Sci. Ser. B 59, 497–505 (2017). https://doi.org/10.1134/S1560090417050074

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090417050074

Navigation