Skip to main content
Log in

Nanoporous polymer networks based on N-vinylpyrrolidone

  • Synthesis
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

A method of preparing nanoporous polymer networks containing N-vinylpyrrolidone units via the crosslinking radical copolymerization in bulk performed in the presence of amphiphilic N-vinylpyrrolidone copolymers with the branched morphology and different physicochemical characteristics is developed. It is shown that macromolecular nanoobjects may be extracted from polymer composites using good solvents, such as chloroform and isopropyl alcohol. The physicomechanical, thermal, and diffusion–sorption properties of polymer composites before and after their extraction are compared. SEM and low-temperature nitrogen adsorption measurements reveal that nanosized pores are contained in the network copolymers after extraction of the polymer additives. The specific surface area, total pore volume, pore size, and pore-size distribution are determined. The maximum specific surface area of polymer networks attains ~26 m2/g, and mesopores compose the main type of pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. D. Gendrikson, A. V. Zherdev, and B. B. Dzantiev, Usp. Biol. Khim. 49, 149 (2006).

    Google Scholar 

  2. E. G. Vlakh, V. A. Korzhikov, A. V. Hubina, and T. B. Tennikova, Russ. Chem. Rev. 84 (9), 952 (2015).

    Article  CAS  Google Scholar 

  3. F. P. Sidel’kovskaya, Chemistry of N-Vinylpyrrolidone and Its Polymers (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  4. Yu. E. Kirsh, Poly-N-vinylpyrrolidone and Other Poly- N-vinylamides (Nauka, Moscow, 1998) [in Russian].

    Google Scholar 

  5. E. V. Gromov, E. N. Bune, and V. F. Teleshov, Russ. Chem. Rev. 63, 530 (1994).

    Article  CAS  Google Scholar 

  6. V. N. Ushakova, Yu. F. Panarin, D. P. Kiryukhin, V. M. Munikhes, A. I. Lelyukh, N. N. Ul’yanova, I. A. Baranovskaya, and S. I. Klenin, Vysokomol. Soedin., Ser. A 33 (10), 2151 (1991).

    CAS  Google Scholar 

  7. D. P. Kiryukhin and G. A. Kichigina, High Energy Chem. 40, 315 (2006).

    Article  CAS  Google Scholar 

  8. A. A. Samoilenko, L. N. Nikitin, A. M. Lopatin, I. S. Ionova, A. A. Berlin, and A. R. Khokhlov, Dokl. Chem. 428, 246 (2009).

    Article  CAS  Google Scholar 

  9. D. F. Grishin, E. V. Kolyakina, V. V. Polyanskova, and I. D. Grishin, Russ. J. Appl. Chem. 80 (1), 122 (2007).

    Article  CAS  Google Scholar 

  10. V. N. Pavlyuchenko and S. S. Ivanchev, Polym. Sci., Ser. A 51 (7), 743 (2010).

    Article  Google Scholar 

  11. S. V. Kurmaz and A. N. Pyryaev, Polym. Sci., Ser. B 52 (1), 5 (2010).

    Google Scholar 

  12. S. V. Kurmaz and A. N. Pyryaev, Mendeleev Commun. 20, 52 (2010).

    Article  CAS  Google Scholar 

  13. M. S. Silverstein, Polymer 55, 302 (2014).

    Article  CAS  Google Scholar 

  14. R. Dawson, A. I. Cooper, and D. J. Adams, Prog. Polym. Sci. 37, 530 (2012).

    Article  CAS  Google Scholar 

  15. C. Nguyen, C. J. Hawker, R. D. Miller, E. Huang, J. L. Hendrick, R. Gauderon, and J. G. Hilborn, Macromolecules 33 (11), 4281 (2000).

    Article  CAS  Google Scholar 

  16. J. L. Hedrick, M. Trollsas, C. J. Hawker, B. Atthof, H. Claesson, A. Heise, R. D. Miller, D. Mecerreyes, R. Jerome, and P. Dubois, Macromolecules 31 (25), 8691 (1998).

    Article  CAS  Google Scholar 

  17. C. J. G. Plummer, T. Q. Garamszegi Nguyen, M. Rodlert, and J.-A. E. Manson, J. Mater. Sci. 37, 4819 (2002).

    Article  CAS  Google Scholar 

  18. S. V. Kurmaz, I. S. Kochneva, E. O. Perepelitsina, M. L. Bubnova, G. M. Bakova, E. I. Knerel’man, and G. I. Davydova, Polym. Sci., Ser. A 55 (12), 712 (2013).

    Article  CAS  Google Scholar 

  19. S. V. Kurmaz, G. A. Grubenko, E. I. Knerelman, G. I. Davydova, V. I. Torbov, and N. N. Dremova, Mendeleev Commun. 24, 125 (2014).

    Article  CAS  Google Scholar 

  20. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic, New York, 1982).

    Google Scholar 

  21. S. V. Kurmaz and A. N. Pyryaev, Russ. J. Gen. Chem. 10, 1705 (2012).

    Article  Google Scholar 

  22. T. P. Klimova, T. A. Babushkina, and V. Y. Khvostova, Russ. Chem. Bull. 10, 2452 (2005).

    Article  Google Scholar 

  23. G. V. Korolev and M. M. Mogilevich, Three-dimensional Radical Polymerization. Cross-linked and Hyperbranched Polymers (Khimizdat, St. Petersburg, 2006) [in Russian].

    Google Scholar 

  24. V. P. Roshchupkin and S. V. Kurmaz, Russ. Chem. Rev. 73, 247 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kurmaz.

Additional information

Original Russian Text © N.V. Fadeeva, S.V. Kurmaz, E.I. Knerel’man, G.I. Davydova, V.I. Torbov, N.N. Dremova, 2017, published in Vysokomolekulyarnye Soedineniya, Seriya B, 2017, Vol. 59, No. 3, pp. 214–225.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadeeva, N.V., Kurmaz, S.V., Knerel’man, E.I. et al. Nanoporous polymer networks based on N-vinylpyrrolidone. Polym. Sci. Ser. B 59, 257–267 (2017). https://doi.org/10.1134/S1560090417030058

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090417030058

Navigation