Skip to main content
Log in

A biocompatible nanocomposite based on allyl chitosan and vinyltriethoxysilane for tissue engineering

  • Composites
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The synthesis, structure, and electrophysical properties of a polymer-inorganic biocompatible composite based on unsaturated chitosan ether, namely, allyl chitosan, and vinyltriethoxysilane are studied. During composite synthesis, allyl chitosan forms an individual nanophase with vinyltriethoxysilane and its condensation products in the polymer matrix of allyl chitosan. The size of nanoparticles embedded in a polymer matrix increases from 50 to 1000 nm as the fraction of the added vinyltriethoxysilane grows. Under exposure to UV radiation, both homopolycondensation and heteropolycondensation occur in the composite films via crosslinking according to the radical mechanism and the composite becomes insoluble in water. It has been shown that the resulting composites feature ionic conductivity under application of both direct current and high-frequency electric fields to the sample. Conductivity is provided by a proton–electron ensemble that concentrates at the nanoparticle/polymer matrix interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. E. Schmidt and J. B. Leach, Annu. Rev. Biomed. Eng. 5, 293 (2003).

    Article  CAS  Google Scholar 

  2. C. H. Yi and Y. H. Yu, Appl. Basis Commun. 18, 100 (2006).

    Article  Google Scholar 

  3. M. N. Samoilovich, A. F. Belyanin, S. M. Kleshcheva, N. S. Sergeeva, I. K. Sviridova, V. A. Kirsanova, S. A. Akhmedova, V. S. Urusov, and L. V. Shvanskaya, Nano-Mikrosist. Tekh., No. 8, 38 (2008).

    Google Scholar 

  4. V. S. Urusov, M. I. Samoilovich, N. S. Sergeeva, A. F. Belyanin, L. V. Shvanskaya, I. K. Sviridova, V. A. Kirsanova, A. Yu. Bychkov, S. A. Akhmedova, and S. M. Kleshcheva, Dokl. Biol. Sci. 423 (1), 473 (2008).

    Article  CAS  Google Scholar 

  5. F. Johansson, M. Kanje, S. Eriksson, and L. Wallman, Phys. Status Solidi C, No. 9, 3258 (2005).

    Article  Google Scholar 

  6. B. T. Deleon, R. Oren, M. E. Spira, N. Korbakov, S. Vitzchaik, and A. Saar, Phys. Status Solidi A, No. 8, 1456 (2005).

    Article  Google Scholar 

  7. J. H. Park and G. Luo, Nat. Mater. 8, 331 (2009).

    Article  CAS  Google Scholar 

  8. RF Patent No. 2234514 (2000).

  9. P. Joshi and R. Chitnis, Sci. J. 2, 1 (2008).

    Google Scholar 

  10. C. Silvestru and J. E. Drake, Coord. Chem. Rev. 223, 117 (2001).

    Article  CAS  Google Scholar 

  11. A. S. Zhiltsov, K. L. Boldyrev, O. B. Gorbatsevich, V. V. Kazakova, N. V. Demchenko, G. V. Cherkaev, and A. M. Muzafarov, Silicon 7, 165 (2014).

    Article  Google Scholar 

  12. N. V. Voronina, I. B. Meshkov, V. D. Myakushev, T. V. Laptinskaya, V. S. Papkov, M. I. Buzin, M. N. Il’ina, A. N. Ozerin, and A. M. Muzafarov, J. Polym. Sci., Part A: Polym. Chem. 48, 4310 (2010).

    Article  CAS  Google Scholar 

  13. T. A. Akopova, P. S. Timashev, T. S. Demina, K. N. Bardakova, N. V. Minaev, V. F. Burdukovskii, G. V. Cherkaev, L. V. Vladimirov, A. V. Istomin, E. A. Svidchenko, N. M. Surin, and V. N. Bagratashvili, Mendeleev Commun. 25, 280 (2015).

    Article  CAS  Google Scholar 

  14. K. A. Andrianov, in Elementoorganic Chemistry Methods. Silicon (Nauka, Moscow, 1967), p. 569 [in Russian].

    Google Scholar 

  15. F. D. Osterholtz and R. L. Pohl, J. Adhes. Sci. Technol. 6 (1), 127 (1992).

    Article  CAS  Google Scholar 

  16. G. L. Simionatto and C. E. T. Gomes, Thermochim. Acta 444, 128 (2006).

    Article  Google Scholar 

  17. A. P. Martinez-Camacho, M. O. Cortez-Rocha, J. M. Ezquerra-Brauer, A. Z. Graciano-Verdugo, F. Rodriguez-Felix, M. M. Castillo-Ortega, M. S. Yupiz-Gymez, and M. Plascencia-Jatomea, Carbohydr. Polym. 82, 310 (2010).

    Article  Google Scholar 

  18. E. Pretch, E. Bullmann, and E. Affolter, Structure Determination of Organic Compounds (Springer, Berlin, 2000).

    Book  Google Scholar 

  19. D. Becker, S. Swarts, and D. M. Sevilla, J. Phys. Chem. 89, 2638 (1980).

    Article  Google Scholar 

  20. R. Dorati, C. Colonna, C. Tomasi, I. Genta, T. Modena, A. Fancitano, A. Bultafara, B. Conti, and J. C. Dyre, J. Appl. Phys. 64 (5), 2456 (1998).

    Google Scholar 

  21. J. E. Wertz and J. R. Bolton, Electron Spin Rezonance (McGraw-Hill Book Comp., New York, 1972).

    Google Scholar 

  22. J. C. Dyre, J. Appl. Phys. 64 (5), 2456 (1998).

    Article  Google Scholar 

  23. G. M. Tsangaris, G. C. Psarras, and E. Manolakaki, Adv. Compos. Letts. 8 (1), 25 (1999).

    Article  Google Scholar 

  24. A. K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics Press, London, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Shevchenko.

Additional information

Original Russian Text © A.I. Aleksandrov, T.A. Akopova, V.G. Shevchenko, G.V. Cherkaev, E.N. Degtyarev, A.A. Dubinskii, V.G. Krasovskii, A.I. Prokof’ev, S.S. Abramchuk, M.I. Buzin, 2017, published in Vysokomolekulyarnye Soedineniya, Seriya B, 2017, Vol. 59, No. 1, pp. 80–90.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.I., Akopova, T.A., Shevchenko, V.G. et al. A biocompatible nanocomposite based on allyl chitosan and vinyltriethoxysilane for tissue engineering. Polym. Sci. Ser. B 59, 97–108 (2017). https://doi.org/10.1134/S1560090417010018

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090417010018

Navigation