Skip to main content
Log in

On the Deviation in Cobimaximal Neutrino Mixing Emanating from Charged Lepton Sector

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The recent global fits of neutrino oscillation data is pointing towards non-maximal value of atmospheric neutrino mixing angle (\({{\theta }_{{23}}}\)) and normal hierarchical neutrino masses at about 1.6σ and 2.5σ confidence level, respectively. The neutrino mixing matrix with cobimaximal (CBM) pattern is known to predict maximal value of \({{\theta }_{{23}}}\) (=45°) and Dirac CP phase \({{\delta }_{{{\text{CP}}}}} = {{ \pm \pi } \mathord{\left/ {\vphantom {{ \pm \pi } 2}} \right. \kern-0em} 2}\) while the solar (\({{\theta }_{{12}}}\)) and reactor (\({{\theta }_{{13}}}\)) mixing angles are arbitrary. In this work, we study a simple deviation from this mixing pattern in order to accommodate non-maximal values of \({{\theta }_{{23}}}\). Also, we have calculated the prediction for Jarlskog CP rephasing invariant \({{J}_{{{\text{CP}}}}}\), sensitive to CP violation measured in the neutrino oscillation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Q. R. Ahmad et al. (SNO Collab.), Phys. Rev. Lett. 89, 011302 (2002).

    Article  ADS  Google Scholar 

  2. S. Fukuda et al. (Super-Kamiokande Collab.), Phys. Lett. B 539, 179–187 (2002).

    Article  ADS  Google Scholar 

  3. S. N. Ahmed et al. (SNO Collab.), Phys. Rev. Lett. 92, 181301 (2004).

    Article  ADS  Google Scholar 

  4. T. Araki et al. (KamLAND Collab.), Phys. Rev. Lett. 94, 081801 (2005).

    Article  ADS  Google Scholar 

  5. M. H. Ahn et al. (K2K Collab.), Phys. Rev. D 74, 072003 (2006).

    Article  ADS  Google Scholar 

  6. F. P. An et al. (Daya Bay Collab.), Chin. Phys. C 37, 011001 (2013).

    Article  ADS  Google Scholar 

  7. J. K. Ahn et al. (RENO Collab.), Phys. Rev. Lett. 108, 191802 (2012).

    Article  ADS  Google Scholar 

  8. K. Abe et al. (T2K Collab.), Phys. Rev. Lett. 107, 041801 (2011).

    Article  ADS  Google Scholar 

  9. P. Adamson et al. (MINOS Collab.), Phys. Rev. Lett. 107, 181802 (2011).

    Article  ADS  Google Scholar 

  10. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

  11. K. S. Babu, D. Gonçalves, S. Jana, and P. A. N. Machado, Phys. Lett. B 815, 136131 (2021).

    Article  Google Scholar 

  12. S. Nagu, J. Singh, and J. Singh, Adv. High Energy Phys. 2020, 5472713 (2020).

    Article  Google Scholar 

  13. R. Srivastava, C. A. Ternes, M. Tórtola, and J. W. F. Valle, Phys. Rev. D 97, 095025 (2018).

    Article  ADS  Google Scholar 

  14. M. Ghosh, P. Ghoshal, S. Goswami, N. Nath, and S. K. Raut, Phys. Rev. D 93, 013013 (2016).

    Article  ADS  Google Scholar 

  15. S. Verma, Adv. High Energy Phys. 2015, 385968 (2015).

    Article  Google Scholar 

  16. M. Koike, N. Okamura, M. Saito, and T. Takeuchi, Phys. Rev. D 73, 053010 (2006).

    Article  ADS  Google Scholar 

  17. M. Koike, T. Ota, and J. Sato, Phys. Rev. D 65, 053015 (2002).

    Article  ADS  Google Scholar 

  18. A. Aguilar et al. (LSND Collab.), Phys. Rev. D 64, 112007 (2001).

    Article  ADS  Google Scholar 

  19. M. A. Acero, C. Giunti, and M. Laveder, Phys. Rev. D 78, 073009 (2008).

    Article  ADS  Google Scholar 

  20. C. Giunti and M. Laveder, Phys. Rev. C 83, 065504 (2011).

    Article  ADS  Google Scholar 

  21. J. Kostensalo, J. Suhonen, C. Giunti, and P. C. Srivastava, Phys. Lett. B 795, 542—547 (2019).

    Article  ADS  Google Scholar 

  22. A. P. Serebrov et al., Phys. Rev. D 104, 032003 (2021).

    Article  ADS  Google Scholar 

  23. V. V. Barinov et al., Phys. Rev. Lett. 128, 232501 (2022).

    Article  ADS  Google Scholar 

  24. M. A. Acero et al., arXiv:2203.07323 hep-ex.

  25. P. F. Harrison, D. H. Perkins, and W. G. Scott, Phys. Lett. B 458, 79–92 (1999).

    Article  ADS  Google Scholar 

  26. P. F. Harrison, D. H. Perkins, and W. G. Scott, Phys. Lett. B 530, 167 (2002).

    Article  ADS  Google Scholar 

  27. Z. z. Xing, Phys. Lett. B 533, 85–93 (2002).

    Article  ADS  Google Scholar 

  28. P. F. Harrison and W. G. Scott, Phys. Lett. B 535, 163–169 (2002).

    Article  ADS  Google Scholar 

  29. P. F. Harrison and W. G. Scott, Phys. Lett. B 557, 76 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  30. X. G. He and A. Zee, Phys. Lett. B 560, 87–90 (2003).

    Article  ADS  Google Scholar 

  31. N. Li and B. Q. Ma, Phys. Rev. D 71, 017302 (2005).

    Article  ADS  Google Scholar 

  32. A. Datta, F. S. Ling, and P. Ramond, Nucl. Phys. B 671, 383–400 (2003).

    Article  ADS  Google Scholar 

  33. Y. Kajiyama, M. Raidal, and A. Strumia, Phys. Rev. D 76, 117301 (2007).

    Article  ADS  Google Scholar 

  34. F. Vissani, arXiv:hep-ph/9708483 hep-ph.

  35. V. D. Barger, S. Pakvasa, T. J. Weiler, and K. Whisnant, Phys. Lett. B 437, 107—116 (1998).

    Article  ADS  Google Scholar 

  36. A. J. Baltz, A. S. Goldhaber, and M. Goldhaber, Phys. Rev. Lett. 81, 5730–5733 (1998).

    Article  ADS  Google Scholar 

  37. I. Stancu and D. V. Ahluwalia, Phys. Lett. B 460, 431–436 (1999).

    Article  ADS  Google Scholar 

  38. N. Li and B. Q. Ma, Phys. Lett. B 600, 248–254 (2004).

    Article  ADS  Google Scholar 

  39. E. Ma, Phys. Lett. B 752, 198–200 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  40. E. Ma and G. Rajasekaran, Eur. Phys. Lett. 119, 31001 (2017).

    Article  ADS  Google Scholar 

  41. E. Ma, Phys. Lett. B 816, 136203 (2021).

    Article  Google Scholar 

  42. H. Fritzsch and Z. z. Xing, Phys. Lett. B 372, 265–270 (1996).

    Article  ADS  Google Scholar 

  43. H. Fritzsch and Z. z. Xing, Phys. Lett. B 440, 313–318 (1998).

    Article  ADS  Google Scholar 

  44. H. Fritzsch and Z. z. Xing, Phys. Rev. D 61, 073016 (2000).

    Article  ADS  Google Scholar 

  45. P. M. Ferreira, W. Grimus, D. Jurciukonis, and L. Lavoura, J. High Energy Phys. 07, 010 (2016).

  46. W. Grimus and L. Lavoura, Phys. Lett. B 579, 113–122 (2004).

    Article  ADS  Google Scholar 

  47. I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, and A. Zhou, J. High Energy Phys. 09, 178 (2020).

    Article  ADS  Google Scholar 

  48. Z. h. Zhao, J. High Energy Phys. 09, 023 (2017).

  49. S. Gollu, K. N. Deepthi, and R. Mohanta, Mod. Phys. Lett. A 28, 1350131 (2013).

    Article  ADS  Google Scholar 

  50. D. C. Rivera-Agudelo, and S. L. Tostado, Nucl. Phys. B 987, 116098 (2023).

    Article  Google Scholar 

  51. B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957).

    ADS  Google Scholar 

  52. Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870–880 (1962).

    Article  ADS  Google Scholar 

  53. C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).

    Article  ADS  Google Scholar 

  54. P. I. Krastev and S. T. Petcov, Phys. Lett. B 205, 84–92 (1988).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge Department of Physics and Astronomical Science, Central University of Himachal Pradesh for providing necessary facility to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Verma or A. Kumar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Kumar, A. On the Deviation in Cobimaximal Neutrino Mixing Emanating from Charged Lepton Sector. Phys. Part. Nuclei Lett. 20, 1350–1356 (2023). https://doi.org/10.1134/S1547477123060390

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123060390

Navigation