Skip to main content
Log in

The Investigation of the 8Li(α, n)11B Cross Section at Low Energy by a Distorted Wave Born Approximation Model

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The investigation of the cross section of the 8Li(α, n)11B reaction has vital importance for both primordial nucleosynthesis in inhomogeneous models and constraining the physical conditions characterizing the r-process. In order to understand the reaction mechanism at low energies, we have applied the Distorted Wave Born Approximation (DWBA) theory below 2 MeV to determine direct reaction contribution. The total cross section has been calculated for the transitions of excited states to 8Li(α, n)11B. Spectroscopic factor strengths for 8Li(α, n)11B have been calculated within the framework of the shell model. Furthermore, the existing experimental measurements concerning the reaction in question at Big Bang zone and r-process region were analyzed using Wentzel, Kramers and Brilloin method (WKB) and distorted wave born approximation methods respectively. However, both resonance-like structures of 12B at low energies and unclear nuclear structure of 8Li strongly influence total cross section in the Big Bang and r-process zones. It is apparent that reaction mechanism of 8Li(α, n)11B is out of the scope DWBA and WKB. Furthermore, in order to understand reaction mechanisms at low energies, a new experimental setup is proposed for measuring the angular distributions and total cross-section for 8Li(α, n)11B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. G. Steigman, Annu. Rev. Nucl. Part. Sci. 57, 463 (2007).

    Article  ADS  Google Scholar 

  2. R. H. Cyburt, B. D. Fields, K. A. Olive, et al., Rev. Mod. Phys 88, 015004 (2016).

    Article  ADS  Google Scholar 

  3. R. H. Cyburt, B. D. Fields, K. A. Olive, Phys. Lett. B 567, 227 (2003).

    Article  ADS  Google Scholar 

  4. R. H. Cyburt, Phys. Rev. D 70, 023505 (2004).

    Article  ADS  Google Scholar 

  5. A. Coc, E. V. Flam, P. Descouvemont, et al., Astrophys. J. 600 (2004) 544.

    Article  ADS  Google Scholar 

  6. T. Kajino, Nucl. Phys. A 588, 339 (1995).

    Article  ADS  Google Scholar 

  7. T. Kajino, G, J. Mathews, and G. M Fuller, Astrophys. J. 364, 7 (1990).

    Article  ADS  Google Scholar 

  8. T. Sasaqui, T. Kajino, G. J. Mathews, et al., Astrophys. J. 634, 1173 (2005).

    Article  ADS  Google Scholar 

  9. T. Paradellis, S. Kossionides, G. Doukellis, et al., Z. Phys. A 337, 211 (1990).

    ADS  Google Scholar 

  10. S. K. Das, T. Fukuda, Y. Mizoi, et al., Phys. Rev. C 95, 055805 (2017).

    Article  ADS  Google Scholar 

  11. X. Gu, R.N. Boyd, M. M. Farrell, et al., Phys. Lett. B 343, 31 (1995).

    Article  ADS  Google Scholar 

  12. R. N. Boyd, I. Tanihata, N. Inabeet, et al., Phys. Rev. Lett. 68, 1283 (1992).

    Article  ADS  Google Scholar 

  13. S. Cherubini, P. Figuera, A. Musumarra, et al., Eur. Phys. J. A 20, 355 (2004).

    Article  ADS  Google Scholar 

  14. A. Del Zoppo and M. La Cognata, Phys. Lett. B 753, 449 (2016).

    Article  ADS  Google Scholar 

  15. M. La Cognata, A. Del Zoppo, P. Figuera, et al., Phys. Lett. B 664, 157 (2008).

    Article  ADS  Google Scholar 

  16. H. Ishiyama, T. Hashimoto, T. Ishikawa, et al., Phys. Lett. B 640, 82 (2006).

    Article  ADS  Google Scholar 

  17. Y. Mizoi, T. Fukuda, Y. Matsuyama, et al., Phys. Rev. C 62, 065801 (2000).

    Article  ADS  Google Scholar 

  18. C. Iliadis, Nuclear Physics of Stars, 2nd ed. (Wiley, 2015).

    Book  Google Scholar 

  19. H. Beaumevieille, A. Bouchemha, Y. Boudouma, et al., C. R. Acad. Sci. Paris T 327, 251 (1999).

    ADS  Google Scholar 

  20. J.H. Kelley, E. Kwan, and J. E. Purcel, Nucl. Phys. A 880, 88 (2012).

    Article  ADS  Google Scholar 

  21. P. E. Hodgson, Nuclear Reactions and Nuclear Structure (Clarendon Press, 1971; OUP, 1978).

  22. P. D. Kunz, Computer code DWUCK-V, Uni. Colorado.

  23. B. A. Brown and W. D. M. Rae, Nucl. Data Sheets 120, 115 (2014).

    Article  ADS  Google Scholar 

  24. V.Avrigeanu, P. E. Hodgson, and M. Avrigeanu, Phys. Rev. 49, 2136 (1994).

    ADS  Google Scholar 

  25. J. H. Dave and C. R. Gould, Phys. Rev. C 28, 2212 (1983).

    Article  ADS  Google Scholar 

  26. T. Rauscher, K. Grün, H. Krauss, et al., Phys. Rev. C 45, 1992 (1996).

    Google Scholar 

  27. G. W. Fan, M. Fukuda, D. Nishimura, et al., Phys. Rev. C 90, 044321 (2014).

    Article  ADS  Google Scholar 

  28. J. Dilling, R. Krücken, and J. Merminga, ISAC and ARIEL: The TRIUMF Radioactive Beam Facilities and the Scientific Program. A Laboratory Portrait of ISAC, 1st ed. (Springer, 2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author gratefully acknowledges the assistance of many people who supported this effort, including DWBA for their guidance in calculations, and fruitful discussions with Dr. Antonio M. Moro from the Departamento de Fisica Atomica, Molecular y Nuclear at Universidad de Sevilla and thank to Alex Brown from Michigan State University for shell model calculations, as well as TRIUMF-Canada people for experimental setup proposal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kilic.

Ethics declarations

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilic, A.I. The Investigation of the 8Li(α, n)11B Cross Section at Low Energy by a Distorted Wave Born Approximation Model. Phys. Part. Nuclei Lett. 20, 1335–1341 (2023). https://doi.org/10.1134/S1547477123060183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123060183

Keywords:

Navigation