Skip to main content
Log in

Resonator with a Сorrugated Boundary: Numerical Results

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We consider a two-dimensional quantum system consisting of a resonator with the Neumann condition, to which N small similar resonators are attached along the boundary through small holes. The main purpose is to study the limiting case for \(N \to \infty \). It is shown that in this limit the problem is reduced to a boundary value problem with an energy-dependent boundary condition of the Robin type. Asymptotic methods are used, as well as approximations of the eigenstates of the system obtained using the pinhole model. The results are compared with numerically obtained values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. Courant and D. Hilbert, Methods of Mathematical Physics (Wiley-Interscience, New York, 1953; ГТТИ, 1933), Vol. 1.

    MATH  Google Scholar 

  2. J. M. Arrieta, J. K. Hale, and Q. J. Han, “Eigenvalue problems for nonsmoothly perturbed domains,” Differential Equations 91, 24–52 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. E. Sanchez-Palencia, Nonhomogeneous Media and Vibration Theory (Springer, Berlin, 1980).

    MATH  Google Scholar 

  4. I. Yu. Popov, “Extension theory and localization of resonances for domains of trap type,” Mat. Sb. 181, 1366–1390 (1990).

    MATH  Google Scholar 

  5. I. Yu. Popov, “The resonator with narrow slit and the model based on the operator extensions theory,” J. Math. Phys. 33, 3794–3801 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. B. S. Pavlov, “The theory of extensions and explicitly-soluble models,” Russ. Math. Surveys 42, 127—168 (1987).

    Article  ADS  MATH  Google Scholar 

  7. R. R. Gadyl’shin, “Existence and asymptotics of poles with small imaginary part for the Helmholtz resonator,” Russ. Math. Surveys 52, 1—72 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. M. Ilyin, Matching of Asymptotic Expansions of Boundary Value Problems (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  9. I. Yu. Popov, “Waveguides coupled via apertures: asymptotic form of the eigenvalue,” Tech. Phys. Lett. 25, 57—59 (1999).

    Article  Google Scholar 

  10. E. S. Trifanova, “Resonance phenomena in curved quantum waveguides coupled via windows,” Tech. Phys. Lett. 35, 180—182 (2009).

    Article  ADS  Google Scholar 

  11. D. Borisov and P. Exner, “Distant perturbation asymptotics in window-coupled waveguides. I. The nonthreshold case,” J. Math. Phys. 47, 113502 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. M. Vorobiev, A. S. Bagmutov, and A. I. Popov, “On formal asymptotic expansion of resonance for quantum waveguide with perforated semitransparent barrier,” Nanosystems: Phys. Chem., Math. 10, 415—419 (2019).

    Google Scholar 

  13. A. Khrabustovskyi, “Homogenization of eigenvalue problem for Laplace–Beltrami operator on Riemannian manifold with complicated ‘bubble-like’ microstructure,” Math. Meth. Appl. Sci. 32, 2123—2137 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Cardone and A. Khrabustovskyi, “Neumann spectral problem in a domain with very corrugated boundary,” J. Differential Equations 259, 2333—2367 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. I. Yu. Popov, I. V. Blinova, and A. I. Popov, “A model of a boundary composed of the Helmholtz resonators,” Complex Var. Elliptic Eq. 66, 1256—1263 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  16. X. Ni, K. Chen, M. Weiner, D. J. Apigo, C. Prodan, A. Alu, E. Prodan, and A. B. Khanikaev, “Observation of Hofstadter butterfly and topological edge states in reconfigurable quasi-periodic acoustic crystals,” Commun. Phys. 2, 55 (2019).

    Article  Google Scholar 

  17. S. Huang, X. Fang, X. Wang, Assouar Badreddine, Cheng Qian, and Li Yong, “Acoustic perfect absorbers via Helmholtz resonators with embedded apertures,” J. Acoust. Soc. Am. 145, 254 (2019).

    Article  ADS  Google Scholar 

  18. M. S. Birman and M. Z. Solomyak, Spectral Theory of Self-adjoint Operators in Hilbert Space (D. Reidel, Dordrecht, 1986).

    Google Scholar 

  19. R. C. McCann, R. D. Hazlett, and D. K. Babu, “Highly accurate approximations of Green’s and Neumann functions on rectangular domains,” Proc. R. Soc. Lond. A 457, 767—772 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 22-11-00046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Bagmutov, E. S. Trifanova or I. Y. Popov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagmutov, A.S., Trifanova, E.S. & Popov, I.Y. Resonator with a Сorrugated Boundary: Numerical Results. Phys. Part. Nuclei Lett. 20, 96–99 (2023). https://doi.org/10.1134/S1547477123020103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123020103

Keywords:

Navigation