Skip to main content
Log in

Towards the Structure of a Cubic Interaction Vertex for Massless Integer Higher Spin Fields

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The structure of cubic Lagrangian vertex corresponding to the irreducible fields with helicities, \({{s}_{1}},{{s}_{2}},{{s}_{3}}\) in d-dimensional Minkowski space is clarified. The explicit form of the operator \({{\mathcal{Z}}_{j}}\) entering the vertex in a nonmultiplicative way (for \(j = 1\) considered in [6]) is obtained. The solution has been derived within BRST approach with complete BRST operators, which contain all constraints corresponding to the conditions that extract the irreducible fields, including trace operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. A. Vasiliev, “Higher spin Gauge theories in various dimensions,” Fortsch. Phys. 52, 702–717 (2004); arXiv: hep-th/0401177. https://doi.org/10.1002/prop.200410167

  2. X. Bekaert, S. Cnockaert, C. Iazeolla, and M. A. Vasiliev, “Nonlinear higher spin theories in various dimensions,” in Higher Spin Gauge Theories: Proceedings of the 1st Solvay Workshop, Brussels, Belgium, May 12–14, 2004 (2005), pp. 132–197; arXiv: hep-th/0503128.

  3. A. Fotopoulos and M. Tsulaia, “Gauge invariant lagrangians for free and interacting higher spin fields. A review of the BRST formulation,” Int. J. Mod. Phys. A 24, 1–60 (2008); arXiv: 0805.1346 [hep-th]. https://doi.org/10.1142/S0217751X09043134

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. X. Bekaert, N. Boulanger, and P. Sundell, “How higher spin gravity surpasses the spin two barrier: No-go theorems versus yes-go examples,” Rev. Mod. Phys. 84, 987–1009 (2012); arXiv: 1007.0435 [hep-th]. https://doi.org/10.1103/RevModPhys.84.987

    Article  ADS  Google Scholar 

  5. M. A. Vasiliev, “Higher spin theory and space-time metamorphoses,” Lect. Notes Phys. 892, 227–264 (2015); arXiv: 1404.1948 [hep-th]. https://doi.org/10.1016/j.physletb.2021.136470

  6. I. L. Buchbinder and A. A. Reshetnyak, “General cubic interacting vertex for massless integer higher spin fields,” Phys. Lett. B 820, 136470 (2021); arXiv: 2105.12030 [hep-th]. https://doi.org/10.1016/j.physletb.2021.136470

  7. R. Manvelyan, K. Mkrtchyan, and W. Ruhl, “General trilinear interaction for arbitrary even higher spin Gauge fields,” Nucl. Phys. B 836, 204–221 (2010); arXiv: 1003.2877 [hep-th]. https://doi.org/10.1016/j.nuclphysb.2010.04.019

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. R. Manvelyan, K. Mkrtchyan, and W. Ruhl, “A generating function for the cubic interactions of higher spin fields,” Phys. Lett. B 696, 410–415 (2011); arXiv: 1009.1054 [hep-th]. https://doi.org/10.1016/j.physletb.2010.12.049

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. E. Joung and M. Taronna, “Cubic interactions of massless higher spins in (A)dS: Metric-like approach,” Nucl. Phys. B 861, 145–174 (2012); arXiv: 1110.5918 [hep-th]. https://doi.org/10.1016/j.nuclphysb.2012.03.013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. M. Vasiliev, “Cubic vertices for symmetric higher spin Gauge fields in (A)dS,” Nucl. Phys. B 862, 341–408 (2012); arXiv: 1108.5921 [hep-th]. https://doi.org/10.1016/j.nuclphysb.2012.04.012

    Article  ADS  MATH  Google Scholar 

  11. R. R. Metsaev, “Cubic interaction vertices for massive and massless higher spin fields,” Nucl. Phys. B 759, 147–201 (2006); arXiv: hep-th/0512342. https://doi.org/10.1016/j.nuclphysb.2006.10.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. R. R. Metsaev, “Cubic interaction vertices for fermionic and bosonic arbitrary spin fields,” Nucl. Phys. B 859, 13–69 (2012); arXiv: 0712.3526 [hep-th]. https://doi.org/10.1016/j.nuclphysb.2012.01.022

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. R. R. Metsaev, “BRST-BV approach to cubic interaction vertices for massive and massless higher spin fields,” Phys. Lett. B 720, 237–237 (2013); arXiv: 1205.3131 [hep-th]. https://doi.org/10.1016/j.physletb.2013.02.009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M. V. Khabarov and Yu. M. Zinoviev, “Cubic interaction vertices for massless higher spin supermultiplets in D = 4,” J. High Energy Phys. 2102, 167 (2021); arXiv: 2012.00482 [hep-th]. https://doi.org/10.1007/JHEP02(2021)167

  15. I. L. Buchbinder, V. A. Krykhtin, M. Tsulaia, and D. Weissman, “Cubic vertices for supersymmetric massless higher spin fields in various dimensions,” Nucl. Phys. B 967, 115427 (2021); arXiv: 2103.08231 [hep-th]. https://doi.org/10.1016/j.nuclphysb.2021.115427

  16. A. Pashnev and M. Tsulaia, “Description of the higher massless irreducible integer spins in the BRST approach,” Mod. Phys. Lett. A 13, 1853–1864 (1998); arXiv: hep-th/9803207. https://doi.org/10.1142/S0217732398001947

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. I. L. Buchbinder, A. Pashnev, and M. Tsulaia, “Lagrangian formulation of the massless higher integer spin fields in the AdS background,” Phys. Lett. B 523, 338–346 (2001); arXiv: hep-th/0109067. https://doi.org/10.1016/S0370-2693(01)01268-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. I. L. Buchbinder and A. A. Reshetnyak, “General Lagrangian formulation for higher spin fields with arbitrary index symmetry. I. Bosonic fields,” Nucl. Phys. B 862, 270–326 (2012); arXiv: 1110.5044 [hep-th]. https://doi.org/10.1016/j.nuclphysb.2012.04.016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. I. L. Buchbinder, A. Fotopoulos, A. C. Petkou, and M. Tsulaia, “Constructing the cubic interaction vertex of higher spin Gauge fields,” Phys. Rev. D 74, 105018 (2006); arXiv: hep-th/0609082. https://link.aps.org/doi/10.1103/PhysRevD.74.105018

    Article  ADS  MathSciNet  Google Scholar 

  20. A. A. Reshetnyak, “Constrained BRST-BFV Lagrangian formulations for higher spin fields in Minkowski spaces,” J. High Energy Phys. 1809, 104 (2018); arXiv: 1803.04678 [hep-th]. https://doi.org/10.1007/JHEP09(2018)104

  21. E. P. Wigner, “On unitary representations of the inhomogeneous Lorentz group,” Ann. Math. 40, 149–204 (1939). https://doi.org/10.2307/1968551

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. C. Fronsdal, “Massless fields with integer spin,” Phys. Rev. D 18, 3624–3629 (1978). https://doi.org/10.1103/PhysRevD.18.3624

    Article  ADS  Google Scholar 

  23. C. Burdik and A. Reshetnyak, “BRST-BV quantum actions for constrained totally-symmetric integer HS fields,” Nucl. Phys. B 965, 115357 (2021); arXiv: 2010.15741 [hep-th]. https://doi.org/10.1016/j.nuclphysb.2021.115357

Download references

ACKNOWLEDGMENTS

The author is grateful to I.L. Buchbinder for helpful discussions of the presented results.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. FEWF-2020-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Reshetnyak.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshetnyak, A.A. Towards the Structure of a Cubic Interaction Vertex for Massless Integer Higher Spin Fields. Phys. Part. Nuclei Lett. 19, 631–637 (2022). https://doi.org/10.1134/S1547477122060188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477122060188

Navigation